Document Detail


Involvement of glucocorticoid-mediated Zn(2+) signaling in attenuation of hippocampal CA1 LTP by acute stress.
MedLine Citation:
PMID:  22306774     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress.
Authors:
Atsushi Takeda; Miki Suzuki; Haruna Tamano; Shunsuke Takada; Kazuki Ide; Naoto Oku
Related Documents :
12385594 - Levels of hypothalamic neurotransmitters in lean and obese zucker rats.
6968074 - Evidence that respiratory depression by serotonin agonists may be exerted in the centra...
3742254 - Effects of neurotensin on regional concentrations of norepinephrine in rat brain.
25490034 - Gadoxetic acid-enhanced mri and sonoelastography: non-invasive assessments of chemoprev...
9359594 - Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-ind...
16462034 - Effects of fructus ligustri lucidi extract on bone turnover and calcium balance in ovar...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-1-27
Journal Detail:
Title:  Neurochemistry international     Volume:  -     ISSN:  1872-9754     ISO Abbreviation:  -     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-2-6     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8006959     Medline TA:  Neurochem Int     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier Ltd.
Affiliation:
Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE-21, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydro...
Next Document:  Target-based drug discovery, genetic diseases, and biologics.