Document Detail

Investigation of chemical rinses suitable for very small meat plants to reduce pathogens on beef surfaces.
MedLine Citation:
PMID:  22221350     Owner:  NLM     Status:  In-Data-Review    
Numerous antimicrobial interventions are capable of reducing the prevalence of harmful bacteria on raw meat products. There is a need to identify effective and inexpensive antimicrobial interventions that could, in practice, be used in very small meat plants because of limited financial, space, and labor resources. Eight antimicrobial compounds (acetic acid, citric acid, lactic acid, peroxyacetic acid, acidified sodium chlorite, chlorine dioxide, sodium hypochlorite, and aqueous ozone) were applied at various concentrations with small, hand-held spraying equipment, and bactericidal effectiveness was examined. Beef plate pieces were inoculated with fecal slurry containing a pathogen cocktail (Escherichia coli O157:H7, Salmonella Typhimurium, Campylobacter coli, and Campylobacter jejuni) and natural populations of aerobic plate counts, coliforms, and E. coli. Antimicrobial solutions were applied to beef surfaces via a portable, pressurized hand-held spray tank, and treated surfaces were subjected to appropriate methods for the enumeration and isolation of pathogens and hygiene indicators. Relative antimicrobial effectiveness was determined (from greatest to least): (i) organic acids, (ii) peroxyacetic acid, (iii) chlorinated compounds, and (iv) aqueous ozone. Using the equipment described, a 2% lactic acid rinse provided 3.5- to 6.4-log CFU/cm(2) reductions across all bacterial populations studied. Conversely, aqueous ozone yielded 0.02- to 2.9-log CFU/cm(2) reductions in pathogens and hygiene indicators, and did not differ significantly from a control tap water rinse (P = 0.055 to 0.731). This 2% lactic acid rinse will be subsequently combined with a previously described water wash to create a multistep antimicrobial intervention that will be examined under laboratory conditions and validated in very small meat plants.
Sally F Yoder; William R Henning; Edward W Mills; Stephanie Doores; Nancy Ostiguy; Catherine N Cutter
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Journal of food protection     Volume:  75     ISSN:  1944-9097     ISO Abbreviation:  J. Food Prot.     Publication Date:  2012 Jan 
Date Detail:
Created Date:  2012-01-06     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  7703944     Medline TA:  J Food Prot     Country:  United States    
Other Details:
Languages:  eng     Pagination:  14-21     Citation Subset:  IM    
Department of Food Science, The Pennsylvania State University, 202 Food Science Building, University Park, Pennsylvania 16802, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Soil Solarization Reduces Escherichia coli O157:H7 and Total Escherichia coli on Cattle Feedlot Pen ...
Next Document:  Treatment of Raw Poultry with Nonthermal Dielectric Barrier Discharge Plasma To Reduce Campylobacter...