Document Detail


Introduction to QM/MM Simulations.
MedLine Citation:
PMID:  23034745     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become a popular tool for investigating chemical reactions in condensed phases. In QM/MM methods, the region of the system in which the chemical process takes place is treated at an appropriate level of quantum chemistry theory, while the remainder is described by a molecular mechanics force field. Within this approach, chemical reactivity can be studied in large systems, such as enzymes. In the first part of this contribution, the basic methodology is briefly reviewed. The two most common approaches for partitioning the two subsystems are presented, followed by a discussion on the different ways of treating interactions between the subsystems. Special attention is given on how to deal with situations in which the boundary between the QM and MM subsystems runs through one or more chemical bonds. The second part of this contribution discusses what properties of larger system can be obtained within the QM/MM framework and how. Finally, as an example of a QM/MM application in practice, the third part presents an overview of recent QM/MM molecular dynamics simulations on photobiological systems. In addition to providing quantities that are experimentally accessible, such as structural intermediates, fluorescence lifetimes, quantum yields and spectra, the QM/MM simulations also provide information that is much more difficult to measure experimentally, such as reaction mechanisms and the influence of individual amino acid residues.
Authors:
Gerrit Groenhof
Related Documents :
3411255 - Models of dispersal in biological systems.
2285805 - On the kinetics of suicide substrates.
23848635 - Large deviations of cascade processes on graphs.
16859305 - Gas to olive oil partition coefficients: a linear free energy analysis.
11970665 - Experimental measurements of sidebranching in thermal dendrites under terrestrial-gravi...
21230055 - Thermodynamic geometry of fractional statistics.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Methods in molecular biology (Clifton, N.J.)     Volume:  924     ISSN:  1940-6029     ISO Abbreviation:  Methods Mol. Biol.     Publication Date:  2013  
Date Detail:
Created Date:  2012-10-04     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9214969     Medline TA:  Methods Mol Biol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  43-66     Citation Subset:  IM    
Affiliation:
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Ab initio molecular dynamics.
Next Document:  Computational enzymology.