Document Detail

Internalization and cytotoxicity analysis of silicon-based microparticles in macrophages and embryos.
MedLine Citation:
PMID:  20069375     Owner:  NLM     Status:  MEDLINE    
Microchips can be fabricated, using semiconductor technologies, at microscopic level to be introduced into living cells for monitoring of intracellular parameters at a single cell level. As a first step towards intracellular chips development, silicon and polysilicon microparticles of controlled shape and dimensions were fabricated and introduced into human macrophages and mouse embryos by phagocytosis and microinjection, respectively. Microparticles showed to be non-cytotoxic for macrophages and were found to be localized mainly inside early endosomes, in tight association with endosomal membrane, and more rarely in acidic compartments. Embryos with microinjected microparticles developed normally to the blastocyst stage, confirming the non-cytotoxic effect of the particles. In view of these results silicon and polysilicon microparticles can serve as the frame for future intracellular chips development and this technology opens the possibility of real complex devices to be used as sensors or actuators inside living cells.
Elisabet Fernández-Rosas; Rodrigo Gómez; Elena Ibañez; Lleonard Barrios; Marta Duch; Jaume Esteve; José A Plaza; Carme Nogués
Related Documents :
3705445 - Variable sensitivity of a feline embryo cell line and of three kitten kidney cell cultu...
19165815 - Embryo of an annual fish (austrolebias charrua) in the last dormancy stage, diapause iii.
10097185 - Control of fertilization-independent endosperm development by the medea polycomb gene i...
25352025 - Downregulation of vgll4 in the progression of esophageal squamous cell carcinoma.
21295575 - Hormonal action of relaxin-like gonad-stimulating substance (gss) on starfish ovaries i...
2147525 - Organization of ruminant peyer's patches as seen with enzyme histochemical markers of s...
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Biomedical microdevices     Volume:  12     ISSN:  1572-8781     ISO Abbreviation:  Biomed Microdevices     Publication Date:  2010 Jun 
Date Detail:
Created Date:  2010-04-26     Completed Date:  2010-07-27     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100887374     Medline TA:  Biomed Microdevices     Country:  United States    
Other Details:
Languages:  eng     Pagination:  371-9     Citation Subset:  IM    
Departament Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Biocompatible Materials / adverse effects,  pharmacokinetics
Cell Line
Cell Survival / drug effects
Embryo, Mammalian / drug effects*,  metabolism*,  pathology
Macrophages / drug effects*,  metabolism*,  pathology
Silicon / adverse effects*,  pharmacokinetics*
Reg. No./Substance:
0/Biocompatible Materials; 7440-21-3/Silicon

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Post-ictal psychosis in adolescent Niemann-Pick disease type C.
Next Document:  Creating and using the CDC HRQOL healthy days index with fixed option survey responses.