Document Detail


Interface-engineered templates for molecular spin memory devices.
MedLine Citation:
PMID:  23344361     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices, opening avenues for developing multifunctional molecular spintronics. Such ideas have been researched extensively, using single-molecule magnets and molecules with a metal ion or nitrogen vacancy as localized spin-carrying centres for storage and for realizing logic operations. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.
Authors:
Karthik V Raman; Alexander M Kamerbeek; Arup Mukherjee; Nicolae Atodiresei; Tamal K Sen; Predrag Lazić; Vasile Caciuc; Reent Michel; Dietmar Stalke; Swadhin K Mandal; Stefan Blügel; Markus Münzenberg; Jagadeesh S Moodera
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  Nature     Volume:  493     ISSN:  1476-4687     ISO Abbreviation:  Nature     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-01-24     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0410462     Medline TA:  Nature     Country:  England    
Other Details:
Languages:  eng     Pagination:  509-13     Citation Subset:  IM    
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Massachusetts 02139, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Laser cooling of a semiconductor by 40 kelvin.
Next Document:  Synthesis and biological evaluation of radioiodinated quinacrine-based derivatives for SPECT imaging...