Document Detail


Inter-leg coordination in the control of walking speed in Drosophila.
MedLine Citation:
PMID:  23038731     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Legged locomotion is the most common behavior of terrestrial animals and it is assumed to have become highly optimized during evolution. Quadrupeds, for instance, use distinct gaits which are optimal with regard to metabolic cost and have characteristic kinematic features and patterns of inter-leg coordination. In insects, the situation is not as clear. In general, insects are able to alter inter-leg coordination systematically with locomotion speed, producing a continuum of coordination patterns. This notion, however, is based on the study of not one but several insect species. These species differ greatly in size and weight and each species tends to walk at a rather narrow range of speeds. We have addressed these issues and examined four strains of Drosophila, which are similar in size and weight, but tend to walk at different speed ranges. Our data suggest that Drosophila controls its walking speed almost exclusively via step frequency. At high walking speeds we invariably found tripod coordination the quality of which increased with speed as indicated by a simple measure of tripod coordination strength (TCS). At low speeds we also observed tetrapod coordination and wave gait-like walking patterns. These findings suggest not only a clear speed dependence of inter-leg coordination, but imply that inter-leg coordination is flex-ible. This was further supported by amputation experiments in which we examined walking behavior in animals after the removal of a hind leg. These animals show immediate adaptations in body posture, leg kinematics, and inter-leg coordination thereby maintaining their ability to walk.
Authors:
Anne Wosnitza; Till Bockemühl; Michael Dübbert; Henrike Scholz; Ansgar Büschges
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-4
Journal Detail:
Title:  The Journal of experimental biology     Volume:  -     ISSN:  1477-9145     ISO Abbreviation:  J. Exp. Biol.     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-5     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0243705     Medline TA:  J Exp Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
University of Cologne, Germany.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Pharmacological assays reveal age-related changes in synaptic transmission at the Caenorhabditis ele...
Next Document:  Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air an...