Document Detail

Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.).
MedLine Citation:
PMID:  23745731     Owner:  NLM     Status:  Publisher    
Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.
Feng Gao; Christof Rampitsch; Vijaya R Chitnis; Gavin D Humphreys; Mark C Jordan; Belay T Ayele
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-6-7
Journal Detail:
Title:  Plant biotechnology journal     Volume:  -     ISSN:  1467-7652     ISO Abbreviation:  Plant Biotechnol. J.     Publication Date:  2013 Jun 
Date Detail:
Created Date:  2013-6-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101201889     Medline TA:  Plant Biotechnol J     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  A fast, simple and accurate method for the determination of intramolecular 13C isotope composition o...
Next Document:  The aryl hydrocarbon receptor and food allergy.