Document Detail

Inhaled corticosteroid use is associated with increased circulating T regulatory cells in children with asthma.
Jump to Full Text
MedLine Citation:
PMID:  23347774     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: T regulatory (Treg) cells are important in balancing immune responses and dysregulation of Treg cells has been implicated in the pathogenesis of multiple disease states including asthma. In this study, our primary aim was to determine Treg cell frequency in the peripheral blood of children with and without asthma. The secondary aim was to explore the association between Treg cell frequency with allergen sensitization, disease severity and medication use.
METHODS: Peripheral blood mononuclear cells from healthy control subjects (N = 93) and asthmatic children of varying disease severity (N = 66) were characterized by multi-parameter flow cytometry.
RESULTS: Our findings demonstrate that children with asthma had a significantly increased frequency of Treg cells compared to children without asthma. Using a multivariate model, increased Treg cell frequency in children with asthma was most directly associated with inhaled corticosteroid use, and not asthma severity, allergic sensitization, or atopic status of the asthma.
CONCLUSION: We conclude that low dose, local airway administration of corticosteroids is sufficient to impact the frequency of Treg cells in the peripheral blood. These data highlight the importance of considering medication exposure when studying Treg cells and suggest inhaled corticosteroid use in asthmatics may improve disease control through increased Treg cell frequency.
Authors:
Anne Marie Singh; Paul Dahlberg; Kristjan Burmeister; Michael D Evans; Ronald Gangnon; Kathy A Roberg; Christopher Tisler; Douglas Dasilva; Tressa Pappas; Lisa Salazar; Robert F Lemanske; James E Gern; Christine M Seroogy
Related Documents :
24608754 - Evaluating the predictive impact of an emergent literacy model on dyslexia in italian c...
23039314 - Inhaled corticosteroids increase the risk of oropharyngeal colonization by streptococcu...
21471024 - A simple scoring system to improve clinical assessment of acute otitis media.
21988314 - Psychometric comparisons of three measures for assessing motor functions in preschooler...
1268454 - Constraints on classificatory skills in young children.
7800434 - Frequency distribution of breath sounds as an indicator of bronchoconstriction during h...
Publication Detail:
Type:  Journal Article     Date:  2013-01-25
Journal Detail:
Title:  Clinical and molecular allergy : CMA     Volume:  11     ISSN:  1476-7961     ISO Abbreviation:  Clin Mol Allergy     Publication Date:  2013  
Date Detail:
Created Date:  2013-03-18     Completed Date:  2013-03-19     Revised Date:  2014-03-19    
Medline Journal Info:
Nlm Unique ID:  101152195     Medline TA:  Clin Mol Allergy     Country:  England    
Other Details:
Languages:  eng     Pagination:  1     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Grant Support
ID/Acronym/Agency:
UL1 TR000427/TR/NCATS NIH HHS
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Clin Mol Allergy
Journal ID (iso-abbrev): Clin Mol Allergy
ISSN: 1476-7961
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2013 Singh et al; licensee BioMed Central Ltd.
open-access:
Received Day: 24 Month: 10 Year: 2012
Accepted Day: 22 Month: 1 Year: 2013
collection publication date: Year: 2013
Electronic publication date: Day: 25 Month: 1 Year: 2013
Volume: 11First Page: 1 Last Page: 1
PubMed Id: 23347774
ID: 3598778
Publisher Id: 1476-7961-11-1
DOI: 10.1186/1476-7961-11-1

Inhaled corticosteroid use is associated with increased circulating T regulatory cells in children with asthma
Anne Marie Singh15 Email: AmSingh@luriechildrens.org
Paul Dahlberg4 Email: dahlberg73@hotmail.com
Kristjan Burmeister4 Email: kburmeister@rc.ophth.wisc.edu
Michael D Evans2 Email: evans@biostat.wisc.edu
Ronald Gangnon23 Email: ronald@biostat.wisc.edu
Kathy A Roberg1 Email: kar8525@gmail.com
Christopher Tisler1 Email: cjt@medicine.wisc.edu
Douglas DaSilva1 Email: dougfrombrazil@gmail.com
Tressa Pappas1 Email: tep@medicine.wisc.edu
Lisa Salazar1 Email: lp3@medicine.wisc.edu
Robert F Lemanske, Jr14 Email: rfl@medicine.wisc.edu
James E Gern14 Email: gern@medicine.wisc.edu
Christine M Seroogy1 Email: cmseroogy@wisc.edu
1Departments of Pediatrics, University of Wisconsin, 1111 Highland Avenue, 4139 WIMR, Madison, WI 53705-2275, USA
2Departments of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
3Departments of Population Health Sciences, University of Wisconsin, Madison, WI, USA
4Departments of Medicine, University of Wisconsin, Madison, WI, USA
5Northwestern Feinberg School of Medicine, Chicago, IL, USA

Introduction

The CD25+ T regulatory (Treg) cell, a widely accepted T cell subset with immune suppressive properties, was initially thought to exist primarily to prevent autoimmune diseases [1]. Increasing evidence suggests that Treg cells are important in varied immune responses, including allergic diseases [2-6]. A role for Treg cells in allergic disease was first highlighted in Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) patients [7,8]. IPEX patients lack Treg cells and have increased serum IgE levels, skewing of T cell responses toward a Th2 phenotype, and autoimmune endocrinopathies [9]. In allergic disease, the current concept suggests that inadequate Treg cell suppression of effector cells or diminished Treg cell numbers contributes to the development and perpetuation of allergic inflammation [10,11]. Studies utilizing murine models of allergic asthma provide strong evidence for an essential Treg cell role in modulating allergic airway inflammation [12-16]. Two recent clinical studies have suggested that Treg cells in adult asthmatic subjects are elevated while another study demonstrated diminished Treg cells in asthmatic children [17-19]. Therefore, the role of Treg cells in allergic asthma remains poorly defined, particularly in children when the initiation of allergic asthma most often occurs.

As Treg cells are important for suppressing immune responses and inflammation, we hypothesized that children with asthma would have fewer Treg cells compared to unaffected children. One of the challenges of identifying Treg cells is the lack of a unique marker. Published studies analyzing human Treg cells have utilized several phenotypic markers including CD25, CD127, and Foxp3. In this study, we used multi-parameter flow cytometry to investigate the frequency of Treg cells in the peripheral blood of children ages 7–8 years with or without asthma. The frequency of Treg cells was further analyzed in relationship to disease severity, allergic sensitization and medication use.


Methods
Study subjects and design

Analysis of peripheral blood mononuclear cells (PBMC) from 159 children ages 7–8 years was performed using flow cytometry. Subjects were enrolled in the Childhood Origins of ASThma (COAST [20]) study at birth (N = 141) or were newly recruited based on a diagnosis of asthma (N = 18). COAST is a high-risk birth cohort in that at least 1 parent was required to have a history of physician-diagnosed asthma and/or documented allergen sensitization (defined as one or more positive aeroallergen skin prick tests) [20,21]. Flow cytometry was performed in children enrolled in COAST over a one-year period. Children within the cohort were classified as having asthma as defined below. Additional children with a physician diagnosis of asthma were recruited to enrich the sample for children with asthma, and were age-matched to those enrolled in the COAST birth cohort. An effort was made to enroll equal numbers of children with intermittent, mild persistent and moderate/severe persistent asthma. This study was approved by University of Wisconsin Human Subjects Committee and legal guardians of all subjects provided informed consent.

Asthma definition and severity

Asthma was diagnosed as previously described by study physicians using National Asthma Education and Prevention Program (NAEPP) Expert Panel Report Guidelines [21,22]. Medication use was assessed by questionnaire at the study visit. Since asthmatic children were taking medication at enrollment, asthma classification was based on medication use and symptom control. Classification was as follows: 1) children well-controlled without a daily controller medication were classified as intermittent; 2) children well-controlled on low dose ICS or leukotriene receptor antagonist were classified as mild persistent; 3) children requiring medium dose ICS or two classes of controller medication for asthma (ICS + long acting beta agonist, medium dose ICS or medium-high dose ICS + leukotriene receptor antagonist) were classified as moderate persistent; and 4) children requiring high dose ICS plus long-acting beta agonist were classified as severe persistent (medication use in each subject as it relates to asthma severity is listed in Additional file 1). Spirometry was performed using the Jaeger MasterScreen system at the study visit. Eigen criteria for lung function were used, similar to those used in published studies [23,24]. If the child was ill, requiring albuterol or with asthma symptoms, the visit was rescheduled. Respiratory viral surveillance nasal samples were collected on all subjects for another study. Virology data from a subset of the study patients (N = 49) was analyzed for respiratory viral infections and symptoms were scored as previously described [22]. Respiratory viral panel analysis from 49 subjects demonstrated no viral detection in 43 subjects and 6 subjects were virus positive (2 human rhinovirus, 2 coronavirus, 1 RSV, and 1 influenza). Additionally, symptom scores from 134 of the 159 study subjects were obtained. The majority of subjects (N = 110, 82%) denied recent respiratory infection symptoms at the time of blood draw for flow cytometry. 10 of those 134 were symptomatic: 7 mild (symptom score 1–4) and 3 moderate (symptom score 5–6). All 10 had respiratory viral panel analysis. Viral detection rates were 67% (2/3) for moderate illness, 29% (2/7) for mild illness, and 5% (2/39) for asymptomatic visits.

Flow cytometry

PBMCs were isolated using Ficoll density gradient, incubated with Fc block (eBiosciences, San Diego, CA) and then stained in media with the following antibodies: CD3-Pacific Blue (clone UCHT1, eBiosciences), CD4-PerCP (clone RPA-T4), CD25-APC (clone 2A3), CD127-PE (clone hIL-7R-M21) (BD Biosciences, San Jose, CA) and FoxP3-Alexa Fluor 488, (clone 206D, BioLegend, San Diego, CA, USA) according to manufacturer’s protocol within 24 hours of blood draw. Cells were acquired on a LSR II (BD Biosciences). Positive staining and gating strategy was determined by comparison to isotype or Fluorescence Minus One (FMO) control. Data were analyzed using Flowjo software (Treestar, San Carlos, CA).

Total IgE and allergy tests

Total and allergen-specific IgE for birch, grass mix, ragweed, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Alternaria alternata, cat, dog, cockroach, egg, and peanut were analysed by UniCAP 100 fluoroenzyme immunoassay (FEIA, Pharmacia and Upjohn Diagnostics, Kalamazoo, MI). The sensitivity for detection of total IgE was 2 kU/L. Allergen-specific IgE values of ≥ 0.35 kU/L were considered positive. Birch, grass mix, ragweed were considered seasonal allergens and dust mite, cat, dog, alternaria, and cockroach were considered perennial allergens.

Statistical analysis

Demographic characteristics were compared by asthma diagnosis using chi-square tests for association. The frequency of Treg cells was compared using one-factor (asthma, asthma with ICS, asthma severity, atopic asthma, FEIA) and two-factor (asthma severity & ICS, atopic asthma & ICS, FEIA & ICS) ANOVA models. Results of two-factor ANOVA models are summarized using least squares means (estimated marginal means for a balanced population). The Treg cell percentage is displayed in the figures as mean ± 95% confidence interval (CI) or standard deviation (SD). The association between Treg cell percentage and total IgE (log-transformed) was analyzed using Pearson’s correlation coefficient. A two-sided p-value < 0.05 was regarded as significant.


Results
Study population

Table  1 outlines the characteristics of the study subjects. The percentage of children with asthma was 42% with no significant difference in gender. The children with asthma were more likely to be African American. There were trends for inverse associations between FEV 0.5, PEF and FVC and asthma disease severity. Asthma diagnosis and disease severity were significantly associated with perennial allergen sensitization and total IgE, but not seasonal allergen sensitization (Table  1). Additionally, body mass index (BMI) was recorded for 66% of the subjects at the time of blood draw for Treg cell analysis. Within this subset, there is no difference in BMI by asthma status or ICS use (data not shown).

Peripheral blood Treg cell frequency is increased in children with asthma

We first sought to define the optimal approach for determining Treg cell frequency in a pediatric population. We analyzed PBMC by multi-parameter flow cytometry using a combination of phenotypic markers for Treg cells. In our cohort, similar to published work in adults [25], the CD4 + CD25 + CD127lo/- T cells expressed the majority of Foxp3 protein (Figure  1A & B). Foxp3 protein was detected in the CD4 + CD25 + CD127+ T cells (Figure  1B); however Foxp3 expression per cell was lower than in CD4 + CD25 + CD127lo/- T cells (Figure  1C). This finding is consistent with low level Foxp3 being an activation marker in effector T cells [26-31]. Based on these findings, we used the combination of CD25, CD127, and Foxp3 to define Treg cells.

Analysis of PBMC revealed a significantly increased percentage of CD4 + CD25 + CD127lo/- T cells in children with asthma compared to non-asthmatics (Figure  2). Interestingly, the Treg cell frequency was significantly higher in boys compared to girls (girls: 6.1 [5.7-6.5, 95%CI] vs. boys: 7.0 [6.7-7.3]; p = 0.001, data not shown). After adjustment for gender, increased Treg cell frequency remained significantly associated with a diagnosis of asthma. There was no significant difference in the percentage of Foxp3 positive cells within the CD4 + CD25 + CD127lo/- T cells or the mean fluorescent intensity (MFI) of Foxp3 between the groups (data not shown).

Increased peripheral blood Treg cell frequency is associated with inhaled corticosteroid use and not asthma disease severity

We considered several possibilities for the observed increased frequency of Treg cells including a compensatory mechanism for airway inflammation or a secondary medication effect. Subjects were therefore categorized based on asthma disease severity and medication use. When asthmatic children were stratified based on inhaled corticosteroid (ICS) use, the increased frequency of Treg cells was positively related to intermittent or daily ICS use (Figure  3). When ICS use and asthma disease severity were considered in a 2-factor model, ICS use but not asthma severity was associated with increased Treg cell frequency (Table  2). ICS use remains significantly associated with increased Treg cell frequency after adjustment for gender (p = 0.001). Study subjects with documented respiratory viral infections tended to have higher Treg cells, though this was not significant (+0.7, 95% CI −0.5 to +1.9, p = 0.28) and ICS use is still significantly associated with higher Treg cell frequency after adjusting for infection.

Peripheral blood Treg cell frequency is increased in children with allergen sensitization

Allergic sensitization is a major risk factor associated with the childhood asthma [32], but studies investigating the association between Treg cells and allergic sensitization have been conflicting [33-35]. To better understand the relationships among Treg cells, allergic sensitization and asthma, we examined the association between total IgE levels, allergen-specific sensitization, and Treg cell frequency. We found a positive correlation between serum total IgE levels and peripheral blood Treg cell frequency (R = 0.24, p = 0.003, data not shown). In addition, there was a trend for increased Treg cells in sensitized children (FEIA negative: 6.37% [5.99, 6.75] vs. FEIA positive: 6.82% [6.48, 7.17], p = 0.09, data not shown). When these two factors were considered in the same model, ICS use but not allergic sensitization was associated with an increased frequency of Treg cells (Table  3).

Lastly, we asked whether relationships between ICS and asthma depended on atopic status. When non-atopic asthmatics were separated from atopic asthmatics, the increased frequency in Treg cells was associated with ICS use, regardless of atopic status (Table  4). Subjects with asthma were more likely to have rhinitis (74% vs. 42%), data not shown, and asthma with ICS use had higher rates of rhinitis compared to asthma without ICS (83% vs. 62%). However, when adjusting the analysis for rhinitis, we still find that Treg cell frequency is significantly higher with ICS use (p = 0.005).


Discussion

In this study, we characterized the frequency of Treg cells in the peripheral blood of 159 children. To the best of our knowledge, this is the largest number of allergic asthmatic children analyzed using multi-parameter flow cytometry for Treg cell frequency determination. Our findings demonstrated a statistically significant association between increased frequency of Treg cells and intermittent or chronic ICS use. This association was independent of asthma disease severity, allergic sensitization, gender, BMI, or other atopic disease status. These findings indicate that ICS use is associated with an elevation in Treg cell frequency and that intermittent ICS use is sufficient for this systemic change to occur. This increase in Treg cell frequency observed with ICS use represents 1% of the total CD4+ cells and approximately 17% of the Treg cells. Moreover, these data suggest that inhaled corticosteroids may work by shifting the balance of adaptive immune responses toward Treg cell predominance. Lastly, our findings suggest that ICS treatment is an important covariate to consider in studies of Treg cells in asthma.

In this study, CD4 + CD25 + CD127lo/- T cells were used to define Treg cells. Recent work from our group utilizing multi-parameter flow cytometry alongside the demethylation status of a region of the Foxp3 promoter (Treg specific demethylated region,TSDR) found the strongest positive relationship using CD4 + CD25 + CD127lo/- T cells as the Treg cell defining phenotype when compared to CD4 + CD25 + CD127lo/-Foxp3+ T cells [36]. This finding suggests Foxp3 protein levels may not be constantly detectable using flow cytometry in bona fide Treg cells. Thus, multi-parameter flow cytometry using CD25 and CD127 to define Treg cells is reliable for quantification of CD4+ T cells expressing high levels of Foxp3 protein and demethylation at TSDR.

The impact of corticosteroids on Treg cells in asthma has not been extensively studied. It has been reported that corticosteroid exposure leads to increased Foxp3 mRNA expression in peripheral blood CD4+ T cells from adult asthmatics treated with oral and inhaled corticosteroids [37]. Smyth et al. demonstrated an increased frequency of CD4 + Foxp3+ T cells in the bronchial alveolar lavage fluid (BALF) in adult patients with moderate-to-severe asthma compared to mild asthmatics and healthy controls, but did not account for medication use or atopic status of the patients [18]. In our study, all of the moderate-to-severe asthmatics were on ICS, and a subset of the study subjects (16%) had one or more bursts of oral corticosteroids (OCS) during the study period. In contrast to ICS, the use of OCS was not significantly associated with increased Treg cell numbers (p = 0.80, data not shown). Our findings in peripheral blood suggest that the increased frequency of BALF Treg cells in the study by Smyth et al. might also be secondary to ICS use. Hartl et al. studied a small number of children with symptomatic asthma (n = 18) demonstrating diminished BALF Treg cell, defined as CD4 + CD25hi, frequency with normalization after initiation of ICS use compared to control groups [19]. Yuksek et al. noted an increase in peripheral blood Treg cells, defined as CD4 + CD25hiFoxp3+, in a small number of asthmatic children (n = 16) after initiation of inhaled corticosteroids [38]. In general, our data are in agreement with the observation that ICS use increases Treg cell frequency, and indicate that there are similar changes in the blood and airway. Our data further clarifies the relationship of ICS and Treg cells using a more rigorous definition of Treg cells with multi-parameter flow cytometry, an increased sample size, and presents a more thorough characterization of other atopic characteristics (allergic sensitization, asthma severity, atopic status).

Several mechanisms could contribute to a positive association between ICS use and increased Treg cells. For example, corticosteroids enhance Foxp3 transcription [37,39]. Alternatively, ICS could alter homing characteristics of Treg cells, or represent a compensatory response to dampen ongoing lung inflammation. Similarly, the positive association between serum IgE and Treg cell frequency could represent a compensatory response to allergic inflammation. Additional studies are warranted to investigate longitudinal changes in Treg cells before and after ICS use. These lines of investigation would help support a mechanism of action for ICS and may serve as a prognostic indicator of response to therapy.

Recently, several studies have implicated Treg cell dysfunction in allergic asthmatics [4,19]. Further analysis of Treg cells in our cohort, including quantifying the percentage of Foxp3+ T cells within the defined Treg cell population and MFI of Foxp3, did not reveal any significant differences with these indirect measurements of Treg cell function. This remained consistent when subjects were segregated by asthma, disease severity, or ICS use (data not shown). Studies further phenotyping the Treg cell compartment and analyzing functional characteristics are ongoing in our laboratory.


Conclusions

In summary, our study demonstrates an increased frequency of Treg cells in the peripheral blood of asthmatic children using ICS. This relationship suggests that corticosteroid use should be considered when analyzing the frequency of Treg cells in asthma. The modest increase (~17%) in Treg cell frequency was observed even with intermittent ICS use. These findings suggest the possibility that ICS-mediated increases in Treg cell frequency could contribute to the beneficial ICS effects on asthma disease control.


Abbreviations

PBMC: Peripheral blood mononuclear cells; Treg: T regulatory cell; FEIA: Fluoroenzyme immunoassay; ICS: Inhaled corticosteroids; COAST: Childhood Origins of ASThma.


Competing interests

No competing of interests exist for any of the authors.


Authors’ contributions

All authors contributed to data acquisition for the study, AMS, RFL, JEG and CMS contributed to the design, analysis of the study, and manuscript preparation. MDE and RG did all statistical analyses. CMS is the guarantor of this article. All authors read and approved the final manuscript.


Supplementary Material Additional file 1

Asthma classification of subjects and medication use.


Click here for additional data file (1476-7961-11-1-S1.docx)


Acknowledgements

Funding for this study was provided AAAAI Fellow Development Award (AMS): AAAAI Research Trust Faculty Development Award (CMS): National Institutes of Health R01 HL80072 (JEG); CTSA, formerly NIH/NCRR UL1RR025011, now NIH/NCATS UL1TR000427 (CMS, JEG, RFL); National Institutes of Health P01HL070831 (RFL). We thank the University of Wisconsin Carbone Cancer Center Flow Cytometry Laboratory staff.


References
Sakaguchi S,Sakaguchi N,Asano M,Itoh M,Toda M,Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseasesJ ImmunolYear: 19951553115111647636184
Shreffler WG,Wanich N,Moloney M,Nowak-Wegrzyn A,Sampson HA,Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk proteinJ Allergy Clin ImmunolYear: 200912314352 e47. 10.1016/j.jaci.2008.09.05119130927
Meiler F,Klunker S,Zimmermann M,Akdis CA,Akdis M,Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptorsAllergyYear: 200863111455146310.1111/j.1398-9995.2008.01774.x18925882
Nguyen KD,Vanichsarn C,Fohner A,Nadeau KC,Selective deregulation in chemokine signaling pathways of CD4(+)CD25(hi)CD127(lo)/(−) regulatory t cells in human allergic asthmaJ Allergy Clin ImmunolYear: 20091234933939 e910. 10.1016/j.jaci.2008.11.03719152963
Nadeau K,McDonald-Hyman C,Noth EM,Pratt B,Hammond SK,Balmes J,Tager I,Ambient air pollution impairs regulatory T-cell function in asthmaJ Allergy Clin ImmunolYear: 20101264845852 e810. 10.1016/j.jaci.2010.08.00820920773
Ling EM,Smith T,Nguyen XD,Pridgeon C,Dallman M,Arbery J,Carr VA,Robinson DS,Relation of CD4 + CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic diseaseLancetYear: 2004363940960861510.1016/S0140-6736(04)15592-X14987885
Wildin RS,Ramsdell F,Peake J,Faravelli F,Casanova JL,Buist N,Levy-Lahad E,Mazzella M,Goulet O,Perroni L,et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfyNat GenetYear: 2001271182010.1038/8370711137992
Bennett CL,Christie J,Ramsdell F,Brunkow ME,Ferguson PJ,Whitesell L,Kelly TE,Saulsbury FT,Chance PF,Ochs HD,The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3Nat GenetYear: 2001271202110.1038/8371311137993
Chatila TA,Blaeser F,Ho N,Lederman HM,Voulgaropoulos C,Helms C,Bowcock AM,JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndromeJ Clin InvestYear: 200010612R758110.1172/JCI1167911120765
Robinson DS,Larche M,Durham SR,Tregs and allergic diseaseJ Clin InvestYear: 2004114101389139715545986
Lloyd CM,Hawrylowicz CM,Regulatory T cells in asthmaImmunityYear: 200931343844910.1016/j.immuni.2009.08.00719766086
Kearley J,Barker JE,Robinson DS,Lloyd CM,Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4 + CD25+ regulatory T cells is interleukin 10 dependentJ Exp MedYear: 2005202111539154710.1084/jem.2005116616314435
Kearley J,Robinson DS,Lloyd CM,CD4 + CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodelingJ Allergy Clin ImmunolYear: 20081223617624 e616. 10.1016/j.jaci.2008.05.04818672278
Lewkowich IP,Herman NS,Schleifer KW,Dance MP,Chen BL,Dienger KM,Sproles AA,Shah JS,Kohl J,Belkaid Y,et al. CD4 + CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and functionJ Exp MedYear: 2005202111549156110.1084/jem.2005150616314437
Joetham A,Takeda K,Taube C,Miyahara N,Matsubara S,Koya T,Rha YH,Dakhama A,Gelfand EW,Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-betaJ ImmunolYear: 200717831433144217237391
Jaffar Z,Sivakuru T,Roberts K,CD4 + CD25+ T cells regulate airway eosinophilic inflammation by modulating the Th2 cell phenotypeJ ImmunolYear: 200417263842384915004191
Thunberg S,Gafvelin G,Nord M,Gronneberg R,Grunewald J,Eklund A,van Hage M,Allergen provocation increases TH2-cytokines and FOXP3 expression in the asthmatic lungAllergyYear: 201065331131810.1111/j.1398-9995.2009.02218.x19845574
Smyth LJ,Eustace A,Kolsum U,Blaikely J,Singh D,Increased airway T regulatory cells in asthmatic subjectsChestYear: 2010138490591210.1378/chest.09-307920453071
Hartl D,Koller B,Mehlhorn AT,Reinhardt D,Nicolai T,Schendel DJ,Griese M,Krauss-Etschmann S,Quantitative and functional impairment of pulmonary CD4 + CD25hi regulatory T cells in pediatric asthmaJ Allergy Clin ImmunolYear: 200711951258126610.1016/j.jaci.2007.02.02317412402
Lemanske RF Jr,The childhood origins of asthma (COAST) studyPediatr Allergy ImmunolYear: 200213Suppl 15384312688623
Guilbert TW,Singh AM,Danov Z,Evans MD,Jackson DJ,Burton R,Roberg KA,Anderson EL,Pappas TE,Gangnon R,et al. Decreased lung function after preschool wheezing rhinovirus illnesses in children at risk to develop asthmaJ Allergy Clin ImmunolYear: 20111283532538 e531-510. 10.1016/j.jaci.2011.06.03721878241
Jackson DJ,Gangnon RE,Evans MD,Roberg KA,Anderson EL,Pappas TE,Printz MC,Lee WM,Shult PA,Reisdorf E,et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk childrenAm J Respir Crit Care MedYear: 2008178766767210.1164/rccm.200802-309OC18565953
Eigen H,Bieler H,Grant D,Christoph K,Terrill D,Heilman DK,Ambrosius WT,Tepper RS,Spirometric pulmonary function in healthy preschool childrenAm J Respir Crit Care MedYear: 20011633 Pt 161962311254514
Guilbert TW,Morgan WJ,Krawiec M,Lemanske RF Jr,Sorkness C,Szefler SJ,Larsen G,Spahn JD,Zeiger RS,Heldt G,et al. The Prevention of Early Asthma in Kids study: design, rationale and methods for the Childhood Asthma Research and Education networkControl Clin TrialsYear: 200425328631010.1016/j.cct.2004.03.00215157730
Liu W,Putnam AL,Xu-Yu Z,Szot GL,Lee MR,Zhu S,Gottlieb PA,Kapranov P,Gingeras TR,Fazekas De St Groth B,et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cellsJ Exp MedYear: 200620371701171110.1084/jem.2006077216818678
Wang J,Ioan-Facsinay A,van der Voort EI,Huizinga TW,Toes RE,Transient expression of FOXP3 in human activated nonregulatory CD4+ T cellsEur J ImmunolYear: 200737112913810.1002/eji.20063643517154262
Tran DQ,Ramsey H,Shevach EM,Induction of FOXP3 expression in naive human CD4 + FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotypeBloodYear: 200711082983299010.1182/blood-2007-06-09465617644734
Suchard MS,Mayne E,Green VA,Shalekoff S,Donninger SL,Stevens WS,Gray CM,Tiemessen CT,FOXP3 expression is upregulated in CD4T cells in progressive HIV-1 infection and is a marker of disease severityPLoS OneYear: 201057e1176210.1371/journal.pone.001176220668701
Morgan ME,van Bilsen JH,Bakker AM,Heemskerk B,Schilham MW,Hartgers FC,Elferink BG,van der Zanden L,de Vries RR,Huizinga TW,et al. Expression of FOXP3 mRNA is not confined to CD4 + CD25+ T regulatory cells in humansHum ImmunolYear: 2005661132010.1016/j.humimm.2004.05.01615620457
Allan SE,Crome SQ,Crellin NK,Passerini L,Steiner TS,Bacchetta R,Roncarolo MG,Levings MK,Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine productionInt ImmunolYear: 200719434535410.1093/intimm/dxm01417329235
Pillai V,Ortega SB,Wang CK,Karandikar NJ,Transient regulatory T-cells: a state attained by all activated human T-cellsClin ImmunolYear: 20071231182910.1016/j.clim.2006.10.01417185041
Peden DB,Development of atopy and asthma: candidate environmental influences and important periods of exposureEnviron Health PerspectYear: 2000108Suppl 347548210852847
Schaub B,Liu J,Hoppler S,Haug S,Sattler C,Lluis A,Illi S,Von Mutius E,Impairment of T-regulatory cells in cord blood of atopic mothersJ Allergy Clin ImmunolYear: 2008121614911499 1499 e1491-1413. 10.1016/j.jaci.2008.04.01018539197
Wegienka G,Havstad S,Zoratti EM,Woodcroft KJ,Bobbitt KR,Ownby DR,Johnson CC,Regulatory T cells in prenatal blood samples: variability with pet exposure and sensitizationJ Reprod ImmunolYear: 2009811748110.1016/j.jri.2009.03.00119545906
Bellinghausen I,Konig B,Bottcher I,Knop J,Saloga J,Regulatory activity of human CD4 CD25 T cells depends on allergen concentration, type of allergen and atopy status of the donorImmunologyYear: 2005116110311110.1111/j.1365-2567.2005.02205.x16108822
Nettenstrom L,Alderson K,Raschke EE,Evans MD,Sondel PM,Olek S,Seroogy CM,An optimized multi-parameter flow cytometry protocol for human T regulatory cell analysis on fresh and viably frozen cells, correlation with epigenetic analysis, and comparison of cord and adult bloodJ Immunol MethodsYear: 20133871–2818823058673
Karagiannidis C,Akdis M,Holopainen P,Woolley NJ,Hense G,Ruckert B,Mantel PY,Menz G,Akdis CA,Blaser K,et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthmaJ Allergy Clin ImmunolYear: 200411461425143310.1016/j.jaci.2004.07.01415577848
Yuksek M,Erol F,Guloglu D,Dogu F,Elhan AH,Babacan E,Ikinciogullari A,Regulatory T cell levels in children with asthmaTurk J PediatrYear: 201153553253622272454
Provoost S,Maes T,van Durme YM,Gevaert P,Bachert C,Schmidt-Weber CB,Brusselle GG,Joos GF,Tournoy KG,Decreased FOXP3 protein expression in patients with asthmaAllergyYear: 200964101539154610.1111/j.1398-9995.2009.02056.x19392991

Figures

[Figure ID: F1]
Figure 1 

CD4 + CD25 + CD127lo/- T cells express the majority of high level Foxp3 protein. PBMCs were isolated and stained for flow cytometry as described in the methods section. Lymphocytes were gated using forward and side scatter profiles followed by CD3 and CD4 gating. A. Within this defined gate, CD127 and CD25 staining was determined using fluorescence minus one (FMO) controls. One representative subject is shown out of 159 assayed with the percentage of each population in upper right corner. B. Foxp3 staining was determined using an isotype control. The percentage of Foxp3 staining within each defined quadrant is plotted for the entire cohort (mean% of Foxp3+ cells within CD3 + CD4 + CD25 + CD127lo/-: 71.1%; SD 14.7%). The CD127 + CD25+ T cells have a subset of low expressing Foxp3+ cells (mean% of Foxp3+ within the CD3 + CD4 + CD25 + CD127+: 20.8%; SD 11.1%). C. Mean Fluorescent Intensity (MFI) for Foxp3 is shown. CD25 + CD127lo/- cells display the highest amount of Foxp3 per cell. The mean MFI for Foxp3 in CD3 + CD4 + CD25 + CD127lo/- T cells: 377 SD 137.8 vs. CD3 + CD4 + CD25 + CD127+ T cells: 146 SD 49.4.



[Figure ID: F2]
Figure 2 

Peripheral blood Treg cells are increased in children with asthma. The percentage CD3 + CD4 + CD25 + CD127lo/- T cells in the peripheral blood of asthmatics (6.91% [6.52, 7.3]) versus control (6.4% [6.07, 6.73]) children. Data are expressed as the mean percentage of Treg cells within gated CD3 + CD4+ T cells with 95% CI.



[Figure ID: F3]
Figure 3 

Peripheral blood Treg cells are increased in asthmatic children using inhaled corticosteroids independent of asthma severity. The percentage of Treg cells in the peripheral blood is elevated in asthmatics treated intermittently (Int) or daily with ICS. Data are expressed as the percentage of Treg cells within gated CD3 + CD4+ T cells with 95% CI. No asthma: 6.4% (6.08, 6.73); Asthma no ICS: 6.24% (5.64, 6.84); Asthma Int ICS: 7.42% (6.54, 8.31); Asthma daily ICS: 7.34% (6.74, 7.94).



Tables
[TableWrap ID: T1] Table 1 

Characteristics of study subjects


Disease classification No asthma Intermittent Mild persistent Moderate/severe persistent p value
Number of subjects
93
31
15
20
 
Age(years) (±SD)
7.6 ± 0.8
7.6 ± 0.5
7.4 ± 0.8
7.4 ± 1.0
0.54
 
 
 
 
 
Female
46 (49%)
10 (32%)
6 (40%)
8 (40%)
0.38
Male
47 (51%)
21 (68%)
9 (60%)
12 (60%)
Caucasian
89 (96%)
29 (94%)
11 (73%)
16 (80)
0.008
African American
3 (3%)
3 (10%)
6 (40%)
6 (30%)
<0.0001
American Indian
4 (4%)
0 (0%)
0 (0%)
0 (0%)
0.84
Asian
0 (0%)
1 (3%)
0 (0%)
0 (0%)
0.42
Hispanic or Latino
4 (4 %)
1 (3%)
1 (7%)
0 (0%)
0.83
Spirometry(median [25th, 75th])
 
 
 
 
 
FEV1
1.50 [1.37, 1.72]
1.54 [1.27, 1.66]
1.23 [1.09, 1.63]
1.46 [1.29, 1.83]
0.11
FEV1% pred
103 [95, 109]
103 [89, 113]
90 [85, 101]
102 [94, 107]
0.43
FVC
1.85 [1.64, 2.06]
1.81 [1.60, 2.05]
1.62 [1.31, 1.93]
1.88 [1.51, 2.21]
0.06
FVC% pred
108 [100, 115]
110 [98, 118]
96 [94, 116]
114 [105, 120]
0.19
FEV0.5
1.11 [1.01, 1.30]
1.14 [0.97, 1.29]
0.92 [0.78, 1.18]
1.07 [0.97, 1.21]
0.07
FEF25-75
1.63 [1.23, 1.95]
1.54 [1.03, 1.88]
1.21 [0.98, 1.51]
1.48 [1.25, 1.70]
0.16
PEF
2.98 [2.58, 3.50]
3.20 [2.59, 3.65]
2.46 [2.16, 2.99]
2.66 [2.51, 3.17]
0.07
FEV1/FVC
0.85 [0.79, 0.88]
0.82 [0.77, 0.86]
0.82 [0.81, 0.88]
0.81 [0.77, 0.86]
0.43
FEV0.5/FVC
0.63 [0.58, 0.69]
0.60 [0.55, 0.65]
0.62 [0.56, 0.65]
0.57 [0.55, 0.65]
0.24
Total lgE (median [25th, 75th])
38 [19, 92]
49 [15, 103]
149 [20, 331]
218 [103, 475]
0.001
Any FEIA
40/91 (44%)
16/29 (55%)
11/15 (73%)
17/20 (85%)
0.003
Aero FEIA
38/91 (42%)
16/29 (55%)
11/15 (73%)
17/20 (85%)
0.002
Perennial aero FEIA
34/91 (37%)
15/29 (52%)
11/15 (73%)
16/20 (80%)
0.001
Seasonal aero FEIA 23/91 (25%) 7/29 (24%) 4/15 (27%) 9/20 (45%) 0.33

FEV1 Forced Expiratory Volume at 1 second, FEV1%pred FEV1 percent predicted, FVC forced vital capacity, FVC%pred, FVC percent predicted; FEV0.5, Forced Expiratory Volume at 0.5 second, FEF25-75, Forced expiratory flow at 25% to 75% of FVC; PEF, peak expiratory flow rate; Aero FEIA, aeroallergen fluoroenzyme immunoassay.


[TableWrap ID: T2] Table 2 

Increased Treg cell frequency is associated with ICS use and not asthma disease Severity


Patient Classification n % Treg cells/CD4+ cells (mean, adjusted) effect* 95%CI p- value
Children not on ICS
119
6.32
--
--
0.02
Children treated with ICS
40
7.37
1.06
(0.15, 1.96)
No asthma
93
6.93
--
--
0.96
Intermittent
31
6.77
-0.17
(-0.91, 0.57)
Mild persistent
15
6.77
-0.17
(-1.15, 0.82)
Mod/Sev persistent
20
6.91
-0.02
(-1.17, 1.12)
Interaction: P = 0.78

ICS Inhaled corticosteroid, 95% CI, 95% confidence interval.

*differences in least squares (LS) means in%Treg cells/CD4+ cells between the groups.


[TableWrap ID: T3] Table 3 

Increased Treg cell frequency is associated with ICS use and not allergic sensitization


Patient Classification n % Treg cells/CD4+ cells (mean, adjusted) effect* 95%CI p-value
Children not on ICS
116
6.38
--
--
0.003
Children treated with ICS
39
7.32
0.94
(0.32, 1.55)
FEIA negative
71
6.76
--
--
0.51
FEIA positive
84
6.94
0.18
(-0.35, 0.71)
Interaction: P = 0.93

ICS, inhaled corticosteroid; FEIA, fluroenzyme immunoassay; 95% CI, 95% confidence interval.

*difference in LS means in%Treg cells/CD4+ cells between the groups. Four children missing FEIA data were excluded from the analysis.


[TableWrap ID: T4] Table 4 

Increased Treg Cell Frequency is Associated with ICS Use and Not Asthma Status


Patient Classification n %Treg cells/CD4+ cells (mean, adjusted) effect* 95%CI p-value
Children not on ICS
118
6.30
--
--
0.005
Children treated with ICS
39
7.55
1.26
(0.40, 2.12)
No asthma
93
7.03
--
--
0.68
Non-atopic asthma
20
7.05
0.02
(-0.80, 0.84)
Atopic asthma
44
6.69
-0.34
(-1.18, 0.50)
Interaction: P = 0.35

ICS Inhaled corticosteroid, 95% CI, 95% confidence interval.

*difference in LS means%Treg cells/CD4+ cells between the groups. Two asthma subjects are missing FEIA data and were excluded from the analysis.



Article Categories:
  • Research

Keywords: Asthma, CD127, Foxp3, Inhaled corticosteroids, T regulatory cell.

Previous Document:  In vivo 3D kinematics of the cervical spine segments during pre-manipulative positioning at the C4/...
Next Document:  Atypical florid vascular proliferation in appendix: a diagnostic dilemma.