Document Detail

Influenza virus infection in nonhuman primates.
Jump to Full Text
MedLine Citation:
PMID:  23017256     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
To determine whether nonhuman primates are infected with influenza viruses in nature, we conducted serologic and swab studies among macaques from several parts of the world. Our detection of influenza virus and antibodies to influenza virus raises questions about the role of nonhuman primates in the ecology of influenza.
Authors:
Erik A Karlsson; Gregory A Engel; M M Feeroz; Sorn San; Aida Rompis; Benjamin P Y-H Lee; Eric Shaw; Gunwha Oh; Michael A Schillaci; Richard Grant; John Heidrich; Stacey Schultz-Cherry; Lisa Jones-Engel
Related Documents :
23549386 - Interpreting the epstein-barr virus (ebv) epigenome using high-throughput data.
24330506 - Schmallenberg virus beyond latitude 65°n.
24173646 - The anti-influenza virus effect of phellinus igniarius extract.
23171736 - Reemergence of chikungunya virus in cambodia.
14500806 - Transmission of west nile virus through blood transfusion in the united states in 2002.
15583866 - The role of the trans-golgi network in varicella zoster virus biology.
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  Emerging infectious diseases     Volume:  18     ISSN:  1080-6059     ISO Abbreviation:  Emerging Infect. Dis.     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-09-28     Completed Date:  2013-02-19     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  9508155     Medline TA:  Emerg Infect Dis     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1672-5     Citation Subset:  IM    
Affiliation:
St. Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Animals
Antibodies, Viral / blood
Bangladesh / epidemiology
Cambodia / epidemiology
Indonesia / epidemiology
Influenza A Virus, H1N1 Subtype / immunology,  isolation & purification
Influenza A Virus, H3N2 Subtype / immunology,  isolation & purification
Influenza A virus / classification,  immunology*,  isolation & purification*
Macaca / classification*
Monkey Diseases / epidemiology*,  virology
Orthomyxoviridae Infections / epidemiology,  immunology,  veterinary*,  virology
Singapore / epidemiology
Grant Support
ID/Acronym/Agency:
P51 RR000166RR 02S014/RR/NCRR NIH HHS; R01 AI078229/AI/NIAID NIH HHS; R03 AI064865/AI/NIAID NIH HHS; UL1 TR000423/TR/NCATS NIH HHS
Chemical
Reg. No./Substance:
0/Antibodies, Viral
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Emerg Infect Dis
Journal ID (iso-abbrev): Emerging Infect. Dis
Journal ID (publisher-id): EID
ISSN: 1080-6040
ISSN: 1080-6059
Publisher: Centers for Disease Control and Prevention
Article Information
Download PDF

Print publication date: Month: 10 Year: 2012
Volume: 18 Issue: 10
First Page: 1672 Last Page: 1675
PubMed Id: 23017256
ID: 3471624
Publisher Id: 12-0214
DOI: 10.3201/eid1810.120214

Influenza Virus Infection in Nonhuman Primates Alternate Title:Influenza Virus Infection in Nonhuman Primates
Erik A. Karlsson
Gregory A. Engel
M.M. Feeroz
Sorn San
Aida Rompis
Benjamin P. Y.-H. Lee
Eric Shaw
Gunwha Oh
Michael A. Schillaci
Richard Grant
John Heidrich
Stacey Schultz-Cherry
Lisa Jones-Engel
St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (E.A. Karlsson, S. Schultz-Cherry);
University of Washington, Seattle, Washington, USA (G.A. Engel, G. Oh, L. Jones-Engel);
Swedish Cherry Hill Family Medicine, Seattle (G.A. Engel);
Jahangirnagar University, Savar, Bangladesh (M.M. Feeroz);
National Veterinary Research Institute, Phnom Penh, Cambodia (S. San);
University of Udayana, Bali, Indonesia (A. Rompis);
Nature Parks, Singapore (B.P.Y.-H. Lee);
Gibraltar Ornithological and Natural History Society, Gibraltar (E. Shaw);
University of Toronto Scarborough, Ontario, Canada (M.A. Schillaci);
and Shin Nippon Biomedical Laboratory, Phnom Penh (R. Grant, J. Heidrich)
Correspondence: Address for correspondence: Lisa Jones-Engel, University of Washington–NRPC, 1705 Pacific St NE, HSB I-039, Seattle, WA 98195, USA; email: jonesengel@wanprc.org

Worldwide, infections with influenza A viruses are associated with substantial illness and death among mammals and birds. Public health and research have placed major focus on understanding the pathogenicity of different influenza virus strains and characterizing new influenza vaccines. Nonhuman primates (NHPs), including macaques, have become popular experimental models for studying the pathogenesis and immunology of seasonal and emerging influenza viruses. NHPs readily seroconvert after experimental inoculation with seasonal influenza virus and have been used to test candidate vaccines for strains of human and avian origin. Like humans, macaques infected with influenza virus exhibit fever, malaise, nasal discharge, and nonproductive cough; virus replication can be detected in the nasal passages and respiratory tract (1,2). However, whether NHPs are infected with influenza viruses in nature remains unknown.

Over the past decade, we have focused on the role of pet and performing monkeys in disease transmission throughout Asia. Commonly trapped in the wild, these monkeys might be sold at wet markets, the putative source of several zoonotic outbreaks (3), where they might be caged next to any number of animal species (Figure 1, panel A) (4). Pet and performing monkeys are likely conduits for cross-species transmission of respiratory pathogens like influenza viruses because of their close and long-term contact with their owners, audiences, domestic animals, wild animals, and birds (Figure 1, panel B) (5). However, the breadth and diversity of this interface presents a challenge for monitoring the emergence of infectious diseases. We have approached this challenge by conducting longitudinal studies at several sites and collecting biological samples and behavioral data representing various contexts of human–NHP contact (47). We used these historical and newly acquired samples, representing various countries and contexts of human–macaque contact, to determine whether NHPs are infected with influenza viruses in nature.


The Study

As part of our decade-long longitudinal studies, ≈200 serum samples were collected from macaques. These included pet macaques (Macaca nigra, M. nigrescens, M. hecki) from Sulawesi, Indonesia; performing macaques from Java, Indonesia (M. fascicularis) and from Bangladesh (M. mulatta); M. fascicularis macaques from the Bukit Timah and Central Catchment Nature Reserves in Singapore, where they freely interact with wild avian fauna and visitors (occasionally entering residential areas) (7); M. sylvanus macaques from the Upper Rock Nature Reserve in Gibraltar, where international tourists frequently use food to entice the macaques to climb about their heads and shoulders (6); and free-ranging macaques (M. fascicularis and M. nemestrina) at temple shrines or M. fascicularis macaques that range throughout a wildlife rescue center and nearby villages in Cambodia (Figure 2). Serum was collected and stored as described (8). All samples were stored on cold packs in the field and transferred to dry ice for shipment to the United States, where they were then stored at −80°C.

For initial screening for antibodies against influenza virus, serum samples were treated with receptor-destroying enzyme as described (9) and tested by using a multispecies Influenza A Virus NP Antibody Inhibition Test (Virusys Corporation, Taneytown, MD, USA) according to manufacturer’s instructions. ELISA results indicated nucleocapsid protein antibodies against influenza in samples from macaques from Cambodia (29.2%), Singapore (16.7%), Sulawesi (16.1%), Bangladesh (13.3%), and Java (6.0%) (Table 1). Antibodies were detected in animals 1–10 years of age at the time of sampling. No influenza virus–specific antibodies were detected from the 73 total samples from Gibraltar, perhaps because persons with influenza virus infection infrequently travel to the Upper Rock Reserve (healthy-visitor effect) (10) or perhaps because monkeys from Gibraltar are less susceptible to infection. Seroprevalence of antibodies against influenza A, by site and collection year, human and NHP population densities, and prevalence of avian influenza viruses are shown in Figure 2.

Serum samples that were positive by ELISA were also screened by hemagglutination-inhibition assay as described (9). Based on the year and location of NHP sample collection, the estimated ages of the NHPs at the time of sample collection, and the presence of avian H5 and H9 influenza viruses in many of these countries during the sampling period (1113), a panel of human vaccine strains and avian influenza virus strains was used in the hemagglutination-inhibition assay. Although not all ELISA-positive serum samples could be subtyped, antibodies against seasonal subtype H1N1 and H3N2 influenza A strains were detected from macaques in Bangladesh, Singapore, Java, and Sulawesi (Table 2). Of the performing macaques in Bangladesh, 2 had antibodies against A/chicken/Bangladesh/5473/2010, a strain of G1 clade subtype H9N2 avian influenza virus. Subtype H9N2 influenza viruses are prevalent in poultry in Bangladesh (14) and have been detected in humans (12). We did not detect antibodies against highly pathogenic avian influenza subtype H5 viruses, which might not be surprising given our relatively small sample size (Table 2). Also given the small sample size, we were unable to perform microneutralization studies, which would be useful to perform with future samples.

In 2011, to determine whether any macaques were actively infected with influenza virus, we collected oral swabs from 48 monkeys in Cambodia to test for influenza virus by real-time reverse transcription PCR as described (8). In brief, the inside of the anesthetized and immobilized monkeys’ mouths (cheeks, tongue, and gums) were swabbed. Swabs were immediately placed into viral transport media, stored, and shipped as previously described. RNA was isolated by using an Ambion MagMAX-96 AI/ND Viral RNA Isolation Kit (Life Technologies Corporation, Grand Island, NY, USA) on a Kingfisher Flex system (Thermo Fisher Scientific, Waltham, MA, USA). Viral RNA was analyzed in a Bio-Rad CFX96 Real-Time PCR Detection System and a C1000 Thermocycler (Bio-Rad, Hercules, CA, USA) with TaqMan Fast Virus 1-Step Master Mix (Applied Biosystems, Foster City, CA, USA) and the InfA primer/probe sets as described (15). Of the 48 respiratory samples, 1 (2.1%) was positive for influenza virus; cycle threshold value was 38 (limit of detection is 40). Attempts to amplify longer PCR fragments of matrix, hemagglutinin, or neuraminidase genes or to isolate the virus by blind passage in embryonated chicken eggs or MDCK cells were unsuccessful.


Conclusions

Our results indicate that NHPs that have contact with humans can be naturally infected with seasonal endemic human influenza viruses and with emerging pandemic-risk avian influenza viruses. We found serologic evidence of infection in several countries, contexts, and macaque species. Preliminary real-time reverse transcription PCR results also pointed to the presence of virus in a buccal swab from an adult macaque from Cambodia, indicating active infection at the time of sampling. On the basis of results from this study, it seems that pet, performing, and free-ranging macaques are susceptible to influenza virus infection. Given the close relationship between humans and NHPs in areas of the world where avian and human influenza viruses cocirculate, further surveillance of these populations is warranted. The ability to detect and eventually isolate strains of influenza virus currently infecting NHPs and humans at the animal–human interface is paramount to understanding how NHP–human interactions can affect the genetics, transmission, and public health risk for infection with influenza A viruses.


Notes

Suggested citation for this article: Karlsson EA, Engel GA, Feeroz MM, San S, Rompis A, Lee BPY-H, et al. Influenza virus infection in nonhuman primates. Emerg Infect Dis [serial on the Internet]. 2012 Oct [date cited]. http://dx.doi.org/10.3201/eid1810.120214

Acknowledgments

We thank R. Webby and R. Webster for critical discussions regarding the manuscript. We are particularly grateful to the following communities, temple committees, and government agencies in the areas where we have been sampling monkeys for years: Lembaga Ilmu Pengetahuan, Indonesia; S. Chan and the staff of the Central Nature Reserve, National Parks Board, Singapore; M. Pizarro, J. Cortes, and the staff of the Gibraltar Ornithological & Natural History Society and the Government of Gibraltar; S. Begum, K. Hasan, and the students and faculty of the Department of Zoology, Jahangirnagar University; and C. Kimleng, S. Bunnary, T. Sothearos, Sisiket, H. Davun, K. Pal, D. Cohn, A. Fuentes, J. Supriatna, R. Babo, Y. Paramastri, E. Iskandar, J. Froehlich, L. Engel, H. Engel, and L. Johnson for supporting and participating in this research. We also thank S. Krauss and M. Ducatez for graciously providing the panel of human vaccine strains and avian influenza virus strains that were used in the hemagglutination-inhibition assay.

This work was supported by the National Institutes of Health National Institute of Allergy and Infectious Diseases, contract no. HHSN266200700005C, the American Lebanese Syrian Associated Charities, NIH National Center for Research Resources grant P51 RR000166RR 02S014, National Institutes of Health National Institute of Allergy and Infectious Diseases grants R01 AI078229 and R03 AI064865, Defense Advanced Research Projects Agency N66001-02-C-8072, the University of Toronto Connaught Fund, the Chicago Zoological Society, and the University of New Mexico Research Allocations Committee.

Dr Karlsson is a postdoctoral research associate in the Department of Infectious Diseases at St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. His research is focused on surveillance of respiratory and gastrointestinal viruses and on understanding how nutrition can affect virus–host interactions and emerging infectious diseases.


References
1. . BerendtRFSimian model for the evaluation of immunity to influenza.Infect Immun. Year: 1974;9:101–54202882
2. . BodewesR, RimmelzwaanGF, OsterhausADAnimal models for the preclinical evaluation of candidate influenza vaccines.Expert Rev Vaccines. Year: 2010;9:59–7210.1586/erv.09.14820021306
3. . WebsterRGWet markets—a continuing source of severe acute respiratory syndrome and influenza?Lancet. Year: 2004;363:234–610.1016/S0140-6736(03)15329-914738798
4. . SchillaciMA, Jones-EngelL, EngelGA, ParamastriY, IskandarE, WilsonB, et al. Prevalence of enzootic simian viruses among urban performance monkeys in Indonesia.Trop Med Int Health. Year: 2005;10:1305–1410.1111/j.1365-3156.2005.01524.x16359412
5. . SchillaciMA, Jones-EngelL, EngelGA, KyesRCExposure to human respiratory viruses among urban performing monkeys in Indonesia. Am J Trop Med Hyg. 2006;74:716–9.16687668
6. . Fuentes A,ShawE, CortesJQualitative assessment of macaque tourist sites in Padangtegal, Bali, Indonesia, and the Upper Rock Nature Reserve, Gibraltar. Int J Primatol. Year: 2007;28:1143–5810.1007/s10764-007-9184-y
7. . ShaJC, GumertM, LeeB, FuentesA, ChanS, Jones-EngelLStatus of the long-tailed macaque (Macaca fascicularis) in Singapore and implications for management.Biodivers Conserv. Year: 2009;18:2909–2610.1007/s10531-009-9616-4
8. . Jones-EngelL, SteinkrausKA, MurraySM, EngelGA, GrantR, AggimarangseeN, et al. Sensitive assays for simian foamy viruses reveal a high prevalence of infection in commensal, free-ranging Asian monkeys.J Virol. Year: 2007;81:7330–710.1128/JVI.00343-0717475645
9. . PalmerDF, DowdleWR, ColemanMT, SchildGC Advanced laboratory techniques for influenza diagnosis. Atlanta: Centers for Disease Control, US Department of Health, Education and Welfare.; Year: 1975
10. . LiCY, SungFCA review of the healthy worker effect in occupational epidemiology.Occup Med (Lond). Year: 1999;49:225–910.1093/occmed/49.4.22510474913
11. . PerdueML, SwayneDEPublic health risk from avian influenza viruses.Avian Dis. Year: 2005;49:317–2710.1637/7390-060305R.116252482
12. . Malik PeirisJSAvian influenza viruses in humans.Rev Sci Tech. Year: 2009;28:161–7319618624
13. . KalthoffD, GlobigA, BeerM(Highly pathogenic) avian influenza as a zoonotic agent.Vet Microbiol. Year: 2010;140:237–4510.1016/j.vetmic.2009.08.02219782482
14. . NegovetichNJ, FeerozMM, Jones-EngelL, WalkerD, AlamSMR, HasanK, et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.PLoS ONE. Year: 2011;6:e1931110.1371/journal.pone.001931121541296
15. . World Health Organization CDC protocol of realtime RTPCR for swine influenza A(H1N1). Year: 2009 Apr 30 [cited 2012 Apr 11]. http://www.who.int/csr/resources/publications/swineflu/CDCrealtimeRTPCRprotocol_20090428.pdf

Figures

[Figure ID: F1]
Figure 1 

The interface between nonhuman primates, birds, and humans. A) A young, recently captured leaf monkey perched on a cage containing birds in a wet market in Java. B) A man and his performing monkey in Bangladesh. Reprinted with permission from Lynn Johnson, 2012.



[Figure ID: F2]
Figure 2 

Nonhuman primate (NHP) habitat countries (in green) and approximate location of sampling sites, with sample size, year collected, context of human–macaque interaction, and seroprevalence of antibodies against influenza virus A. Countries that have reported human influenza infection of avian origin (AI) are outlined in purple.



Tables
[TableWrap ID: T1] Table 1  Anti-influenza nucleocapsid protein antibodies in nonhuman primate populations, 2001–2011*
Location, year No. Macaca species Type(s) No. (%) positive
Singapore, 2003 36 fascicularis Reserve 6 (16.7)
Indonesia
Java, 2002 14 fascicularis Performing, pet 4 (28.6)
Sulawesi, 2001 31 nigra, hecki, nigrescens Pet 5 (16.1)
Gibraltar
2005 37 sylvanus Reserve 0
2009 36 sylvanus Reserve 0
Bangladesh
2006 4 mulatta Performing, pet 0
2010 30 mulatta Performing, pet 4 (13.3)
Cambodia, 2011 48 fascicularis, nemestrina Temple, urban, reserve 14 (29.2)

*Testing was conducted with a multispecies influenza A virus nucleocapsid protein antibody inhibition test for strain-specific antibodies.


[TableWrap ID: T2] Table 2  Seroprevalence of influenza A virus subtypes in monkeys with nucleocapsid protein–positive ELISAs, by location*
Virus strain Virus subtype
(H5 clade) Years used in vaccine No. tested/no. positive
Singapore Indonesia
Bangladesh Cambodia
Java Sulawesi
A/Beijing/262/1995 H1N1 1999–2000 0/6 2/4 1/6† NSA NSA
A/Sydney/5/1997 H3N2 1999–2000 2/6‡ 0/4 1/6§ NSA NSA
A/New Caledonia/20/1999 H1N1 2000–2007 0/6 0/4 1/6† 0/4 0/14
A/Panama/2007/1999 H3N2 2000–2004 2/6‡ 0/4 1/6§ 0/4 NSA
A/California/07/2004 H3N2 2005–2006 NSA NSA NSA 0/4 0/14
A/Wisconsin/67/2005 H3N2 2006–2008 NSA NSA NSA 0/4 0/14
A/Brisbane/59/2007 H1N1 2008–2010 NSA NSA NSA 1/4 0/14
A/Brisbane/10/2007 H3N2 2008–2010 NSA NSA NSA 0/4 0/14
A/California/04/2009 H1N1 2010–present NSA NSA NSA 0/4 0/14
A/Perth/16/2009 H3N2 2010–present NSA NSA NSA 0/4 0/14
A/chicken/Bangladesh/5473/2010 H9 G1 NA NSA NSA NSA 2/4 NSA
A/Vietnam/1203/2004 H5 (1) NA NSA NSA NSA NSA 0/14
A/Cambodia/R0H05050/2007 H5 (1) NA NSA NSA NSA NSA 0/14
A/duck/Hunan/795/2002 H5 (2.1) NA NSA NSA NSA 0/4 NSA
A/BHG/Qinghai/01/2005 H5 (2.2.2) NA NSA NSA NSA 0/4 NSA
A/JWE/Hong Kong/1038/2006 H5 (2.3.4.2) NA NSA NSA NSA 0/4 NSA
A/duck/Laos/3295/2006 H5 (2.3.4.2) NA NSA NSA NSA 0/4 NSA

*Samples were only tested for relevant strains based on the collection location, year of collection, and estimated age of the monkey. Monkeys from Indonesia were not tested for influenza subtype H5N1 viruses because samples were collected in 2001 and 2002 and subtype H5N1 viruses were first reported in poultry from Indonesia in February 2004. Samples with a hemagglutination inhibition value ≥1:10 were considered positive. NSA, no samples available for testing; NA, not applicable for use in vaccine; BHG, bar-headed goose; JWE, Japanese white-eye.
†Individual monkey gave positive results for both strains.
‡Individual monkeys gave positive results for both strains.
§Individual monkey gave positive results for both strains.



Article Categories:
  • Dispatch
Article Categories:
  • Dispatch

Keywords: Keywords: influenza A virus, avian influenza virus, prevalence, nonhuman primates, Macaca, macaque, influenza, viruses, zoonoses.

Previous Document:  Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic flui...
Next Document:  Use of an improved quantitative polymerase chain reaction assay to determine differences in human rh...