Document Detail

Influence of array interspacing on the force required for successful microneedle skin penetration: Theoretical and practical approaches.
MedLine Citation:
PMID:  23359221     Owner:  NLM     Status:  Publisher    
Insertion behaviour of microneedle (MN) arrays depends upon the mechanical properties of the skin and, MN geometry and distribution in an array. In addressing this issue, this paper studies MN array insertion mechanism into skin and provides a simple quantitative basis to relate the insertion force with distance between two MNs. The presented framework is based on drawing an analogy between a beam on an elastic foundation and mechanism of needle insertion, where insertion force is separated into different components. A theoretical analysis indicates that insertion force decreases as interspacing increases. For a specified skin type, insertion force decreased from 0.029 to 0.028 N/MN when interspacing at MN tip was increased from 50 μm (350 μm at MN base) to 150 μm (450 μm at MN base). However, dependence of insertion force seems to decrease as the interspacing is increased beyond 150 μm. To assess the validity of the proposed model, a series of experiments was carried out to determine the force required for skin insertion of MN. Experiments performed at insertion speed of 0.5 and 1.0 mm/s yielded insertion force values of 0.030 and 0.0216 N, respectively, for 30 μm interspacing at MN base (330 μm interspacing at tip) and 0.028 and 0.0214 N, respectively, for 600 μm interspacing at MN base (900 μm interspacing at tip). Results from theoretical analysis and finite element modelling agree well with experimental results, which show MN interspacing only begins to affect insertion force at low interspacing (<150 μm interspacing at MN base). This model provides a framework for optimising MN devices, and should aid development of suitable application method and determination of force for reliable insertion into skin. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
Ololade Olatunji; Diganta B Das; Martin J Garland; Luc Belaid; Ryan F Donnelly
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-28
Journal Detail:
Title:  Journal of pharmaceutical sciences     Volume:  -     ISSN:  1520-6017     ISO Abbreviation:  J Pharm Sci     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-29     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  2985195R     Medline TA:  J Pharm Sci     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2013 Wiley Periodicals, Inc.
Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Nocturia and overnight polysomnography in Parkinson disease.
Next Document:  Titanium elastic nail - Complications in the treatment of paediatric diaphyseal fracture of femur [c...