Document Detail

Indication-specific 6-h systolic blood pressure thresholds can approximate 24-h determination of blood pressure control.
Jump to Full Text
MedLine Citation:
PMID:  20574446     Owner:  NLM     Status:  MEDLINE    
Ambulatory blood pressure monitoring (ABPM) is an accurate method for evaluating hypertension, yet its use in clinical practice may be limited by availability, cost and patient inconvenience. The objective of this study was to investigate the ability of a 6-h ABPM window to predict blood pressure control, judging by that of the full 24-h ABPM session across several clinical indications in a cohort of 486 patients referred for ABPM. Sensitivities and specificities of the 6-h systolic blood pressure mean to accurately classify patients as hypertensive were determined using a fixed reference point of 130 mm Hg for the 24-h mean. For four common indications, in which ABPM was ordered, prediction tables were constructed varying the thresholds for the 6-h mean to find the optimal value that best predicted the 24-h hypertensive status as determined from the full 24-h interval. Using a threshold of 137 mm Hg for the indications of borderline hypertension, evaluation of current antihypertensive regimen and suspected white-coat hypertension, sensitivity and specificity ranged from 0.83-0.88 to 0.80-0.88, respectively, for the ability of 6-h ABPM to correctly categorize hypertensive status. Using 133 mm Hg as the threshold for treatment resistance resulted in a sensitivity and specificity of 0.93 and 0.83, respectively. We conclude that a shortened ABPM session of 6 h can be used to accurately classify blood pressure as controlled or not, based on the results of a 24-h session. The optimal 6-h threshold for comparison depends upon indication for referral.
M E Ernst; G S Sezate; W Lin; C A Weber; J D Dawson; B L Carter; G R Bergus
Related Documents :
8697706 - Seasonal variation in blood pressure in normotensive women studied by home measurements.
11076446 - The effect of balneotherapy on ambulatory blood pressure.
10226236 - Ambulatory blood pressure monitoring: non-pharmacological and pharmacological treatment.
14654746 - The 'abpm effect' gradually decreases but does not disappear in successive sessions of ...
11484576 - Interobserver variability in assessment of signs of tmd.
19167786 - Bedside sonographic measurement of optic nerve sheath diameter as a predictor of increa...
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural     Date:  2010-06-24
Journal Detail:
Title:  Journal of human hypertension     Volume:  25     ISSN:  1476-5527     ISO Abbreviation:  J Hum Hypertens     Publication Date:  2011 Apr 
Date Detail:
Created Date:  2011-03-17     Completed Date:  2011-07-07     Revised Date:  2012-10-15    
Medline Journal Info:
Nlm Unique ID:  8811625     Medline TA:  J Hum Hypertens     Country:  England    
Other Details:
Languages:  eng     Pagination:  250-5     Citation Subset:  IM    
Department of Pharmacy Practice and Science, College of Pharmacy, The University of Iowa, Iowa City, IA, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Antihypertensive Agents / therapeutic use
Blood Pressure* / drug effects
Blood Pressure Monitoring, Ambulatory*
Circadian Rhythm*
Hypertension / diagnosis*,  drug therapy,  physiopathology
Middle Aged
Predictive Value of Tests
Sensitivity and Specificity
Time Factors
Treatment Outcome
Grant Support
1R01HL069801-01A1/HL/NHLBI NIH HHS; R01 HL069801-01A1/HL/NHLBI NIH HHS
Reg. No./Substance:
0/Antihypertensive Agents

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-journal-id): 8811625
Journal ID (pubmed-jr-id): 5250
Journal ID (nlm-ta): J Hum Hypertens
ISSN: 0950-9240
ISSN: 1476-5527
Article Information
Download PDF

License:Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
nihms-submitted publication date: Day: 18 Month: 5 Year: 2010
Electronic publication date: Day: 24 Month: 6 Year: 2010
Print publication date: Month: 4 Year: 2011
pmc-release publication date: Day: 1 Month: 10 Year: 2011
Volume: 25 Issue: 4
First Page: 250 Last Page: 255
ID: 2946963
PubMed Id: 20574446
DOI: 10.1038/jhh.2010.66
ID: nihpa201258
R01 HL069801-01A1 ||HL
National Heart, Lung, and Blood Institute : NHLBI

Indication-specific 6-hour systolic blood pressure thresholds can approximate 24-hour determination of blood pressure control
Michael E. Ernst, PharmD12
Genesis S. Sezate, BS3
Wenjiao Lin, MS4
Cynthia A. Weber, PharmD1
Jeffrey D. Dawson, ScD5
Barry L. Carter, PharmD12
George R. Bergus, MD2
1Department of Pharmacy Practice and Science. College of Pharmacy, The University of Iowa. Iowa City, IA. USA
2Department of Family Medicine. Carver College of Medicine, The University of Iowa. Iowa City, IA. USA
3College of Pharmacy. The University of Iowa. Iowa City, Iowa. USA
4UCLA Center for Health Policy Research. Los Angeles, CA. USA
5Department of Biostatistics. College of Public Health, The University of Iowa. Iowa City, IA. USA
Correspondence: Correspondence: Michael Ernst, Pharm.D., Department of Family Medicine/01291-A PFP, University of Iowa Hospital and Clinics, 200 Hawkins Dr, Iowa City, IA 52242 USA, Phone:319.384.7756, Fax: 319.384.7822,


Out-of-office blood pressure assessments, including 24-hour ambulatory blood pressure monitoring (ABPM) and home/self blood pressure measurement, are important techniques to improve estimates of the true blood pressure of patients with hypertension.1,2 Compared to traditional office blood pressures, these measurements more reliably predict the risk for target organ damage.36 In the case of ABPM, the improved ability to predict risk of cardiovascular events is due to a number of features; namely, that ABPM eliminates observer variability and digit preference often seen in clinical practice, and more importantly, provides assessment of blood pressure throughout the nighttime hours.7 Out-of-office blood pressure assessment can be helpful in the evaluation of patients with suspected white-coat or borderline hypertension, apparent drug resistance, orthostatic hypotension, and episodic hypertension.8

The routine use of ABPM in clinical practice presents a logistical challenge for some patients. First, ABPM requires a significant time commitment, which may interfere with routine daily activities including work and recreation. Secondly, some patients report discomfort associated with the procedure, including increased nocturnal awakenings.9,10 Third, ABPM may not be accurate in some patients such as those with cardiac arrhythmias, very large arms, or poor musculature of the upper arms.11,12 Lastly, the average cost of an ABPM session is approximately $300–500 and is not uniformly reimbursed by insurance carriers. Collectively, these limitations are barriers to more widespread use of ABPM in primary care settings. The valuable information obtained from ABPM makes it important to refine strategies for how best to incorporate ABPM into clinical practice.

We previously demonstrated that the mean systolic blood pressure of a shortened window (6-hours) of an ABPM session can approximate the mean systolic blood pressure of the full 24-hour ABPM session.13 Shorter ABPM sessions could be a useful strategy when out-of-office assessments are desired, but are otherwise unavailable or unable to be performed to their complete extent. We hypothesized that the utility of the 6-hour ABPM window we described previously could be optimized based on the clinical indication for which the patient was referred for ABPM. The purpose of this study was to examine the agreement of the 6-hour interval mean systolic blood pressure with the 24-hour mean systolic blood pressure across several clinical indications of referral. We also sought to identify the optimal threshold for the shortened window to accurately classify a patient’s blood pressure as controlled or uncontrolled as determined from the full ABPM session.

Study Population

Data were reviewed from a cohort of ABPM sessions previously performed by the ABPM referral service of the Family Care Center of the University of Iowa Hospitals and Clinics. This service accepts consults from the outpatient clinics of Departments of Family Medicine and Internal Medicine, and is co-directed by a board-certified family physician and a board-certified clinical pharmacotherapist. For each consult, a member of the ABPM team meets with the patient to provide standardized education about the session, and fits the patient with the appropriate sized blood pressure cuff as determined by arm circumference according to the American Heart Association guidelines for blood pressure measurement.14 Blood pressure readings were obtained every 20 minutes during the daytime (0600 to either 1800, 2000, or 2200 hours), and every 30 minutes during the nighttime (1800, 2000, or 2200 to 0600 hours). The times of initiation and termination of the ABPM sessions were not standardized for each patient to allow flexibility in scheduling and availability of the monitors.

Our study population was a convenience sample of all ABPM sessions processed by the clinic as part of routine clinical practice from its inception in January 2001 through June 2007, coinciding with our previous analysis.13 Three SpaceLabs 90217 monitors (SpaceLabs Medical, Inc, Redmond, WA) were used for all ABPM sessions to insure uniformity. These monitors meet both the Association for the Advancement of Medical Instrumentation and British Hypertension Society standards for accuracy.15 Blood pressure data obtained from the monitors was retrieved using the SpaceLabs ABP Report Management System software platform (v. 1.03.11 and v 2.00.06).

For this analysis, sessions were grouped according to the four most common indications of referral to our service: borderline hypertension (not currently treated but with a series of variable office blood pressures in both the normal and elevated range), evaluation of blood pressure control on mono or dual therapy, suspected white-coat hypertension, and treatment resistance (receiving treatment with three or more antihypertensives). Duplicate ABPM sessions for an individual patient were excluded, as were ABPM sessions referred to the clinic for indications other than the four specified above. Given the unknown variance for the agreement between the 6-hour and 24-hour means across different clinical indications, no formal power calculation was employed. The study was approved by the institutional review board of the University of Iowa.

Statistical Analysis

Our analysis sought to describe the agreement between a 6-hour mean systolic blood pressure and that of the 24-hour mean, and to identify the optimal threshold based on indication of referral for the ability of the 6-hour mean accurately classify whether the patient’s systolic blood pressure was controlled. We examined only the agreement for systolic blood pressure since it is the measurement most closely associated with the risk for cardiovascular events in the age distribution of our population typically referred for ABPM.16

To calculate the 6-hour and 24-hour interval mean systolic blood pressure, the mean systolic blood pressure for each individual patient was calculated for these time periods and then the mean of those means was determined. The first hour (“white-coat window”) of each session was excluded from the 6-hour interval mean and the 24-hour mean since it was significantly higher regardless of the time of day the session was started. Although the 6-hour interval mean is comprised of only 5-hours of data, we refer to the shortened time interval as a “6-hour” interval mean throughout this report. This is because the white-coat window occurred regardless of the time the device was started, and a monitor would in all cases need to be worn for 6 hours to obtain the 5 hours of data necessary to make the evaluation. When encountered, missing hourly data were accommodated with likelihood-based methods.

To describe agreement of the 6-hour mean and the 24-hour mean across indication groups, area under the receiver operating curve (ROC), kappa statistics (percent agreement), and percent absolute value of relative differences were calculated. Sensitivity and specificity of the 6-hour mean to accurately classify patients as hypertensive based on their 24-hour systolic blood pressure mean were determined using a fixed value of 130 mmHg as the 24-hour mean reference point. Although there are no firmly established guidelines for normal and abnormal ABPM values, the reference point of 130 mmHg for the 24-hour mean was chosen because a systolic blood pressure of 130 mmHg or less for the 24-hour mean is generally considered within normal limits.14 A 6-hour mean systolic blood pressure above 130 mmHg would indicate uncontrolled systolic blood pressure for the remainder of the 24-hour session, while below 130 mmHg would indicate controlled systolic blood pressure. Prediction tables were generated by varying the systolic blood pressure thresholds for the mean of the 6-hour interval in order to determine the optimal systolic blood pressure threshold associated with the most favorable sensitivity and specificity for predicting the hypertensive status as determined from the 24-hour mean. All statistical analyses were performed using SAS 9.0 (SAS Institute) and R (The R Project for Statistical Computing,


A total of 569 ABPM sessions were reviewed for inclusion in this study. Duplicate sessions from individual patients were excluded (n=39), as were 44 ABPM sessions referred to the clinic for indications other than those identified in this study. Table 1 shows the demographics of the patient population. The mean age was 52.7 years, and 50% of patients were male. The average session duration for ABPM lasted 22.4 hours (range 19.1–25.7 hours). The mean office blood pressure taken before the ABPM session was 150/83 mmHg. A total of 486 ABPM sessions were included in the final analysis, which included 126 for borderline hypertension, 159 for evaluation of blood pressure control on current therapy, 137 for suspected white-coat hypertension, and 64 for treatment resistance.

Figure 1 illustrates the agreement between the 6-hour mean systolic blood pressure and the mean of the full 24-hour ABPM session over a range of thresholds for the different referral groups. Analysis of the kappa statistics indicated substantial agreement for mean 6-hour systolic blood pressure threshold ranges of 135–140 mmHg for the indications of borderline hypertension, evaluation of blood pressure control on current therapy and suspected white-coat hypertension (Groups I–III). However, resistant hypertension (Group IV) saw the highest agreement and kappa around 132–133 mmHg.

Based on the kappa statistics determined in Figure 1, the sensitivity and specificity of a range of 6-hour thresholds used to classify systolic blood pressure as controlled or not based on the 24-hour mean, were calculated. These results are shown in Table 2. Using a 6-hour systolic blood pressure mean threshold of 137 mmHg for Groups I–III, and 133 mmHg for Group IV, achieved a sensitivity/specificity of 0.88/0.88 for Group I, 0.83/0.85 for Group II, and 0.86/0.80 for Group III, respectively. A threshold of 133 mmHg for Group IV resulted in a sensitivity/specificity of 0.93/0.83.

Table 3 summarizes the ROC statistics, percent agreement, percent absolute relative difference, sensitivity, specificity and corresponding likelihood ratios using systolic blood pressure thresholds of 137 mmHg for Groups I–III, and 133 mmHg for Group IV. Using these thresholds, the corresponding positive and negative likelihood ratios were 7.27 and 0.13 for Group I, 5.34 and 0.21 for Group II, and 4.23 and 0.18 for Group III, respectively. With 133mmHg as the reference for Group IV, a positive and negative likelihood ratio of 5.55 and 0.09 was calculated.


This study suggests that a 6-hour ABPM window can be used to accurately classify a patient’s hypertensive status as determined from their 24-hour mean systolic blood pressure for four common indications of referral for ABPM. We found that the optimal 6-hour threshold used to categorize patients as hypertensive or controlled varied across these indications. Using the 6-hour mean systolic blood pressure threshold of 137 mmHg for the three indications of borderline hypertension, evaluate blood pressure control on current therapy, and suspected white coat hypertension, we found relatively high sensitivity and specificity for this 6-hour mean to accurately classify overall hypertensive status based on the full 24-hour results. A lower threshold of 133 mmHg was necessary for patients referred for resistant hypertension. This difference is likely due to the lack of the 6-hour interval to include nighttime blood pressures since nearly all patients were initially set up during morning hours, as well as the likelihood of patients referred for resistant hypertension having overall higher mean systolic blood pressures.

Measurement of blood pressure is an important surrogate for the determination of cardiovascular risk. Office-based sphygmomanometry remains the gold standard upon which most treatment decisions are made. However, office-based measurements are subject to numerous limitations including observer bias, terminal digit preference, and failure to detect white-coat hypertension, all of which can lead to erroneous treatment decisions.17,18 Out-of-office measurements, including home/self-monitoring and ABPM, can enhance determination of a patient’s true blood pressure level but are not always readily available nor are all patients able to comply with the request to obtain home/self-measurements.

A proposed alternative to a full 24-hour ABPM session has been shorter duration sessions that can predict the 24-hour mean blood presure.13,1921 Truncated ABPM sessions were first shown to be predictive of full 24-hour ABPM sessions in 1982.19 A small study of 6 hypertensive patients compared the mean blood pressure of serial readings over a 2-hour period, 3 consecutive readings, and one single reading to the mean blood pressure of the 24-hour ABPM session. The study concluded that the average blood pressure determined by the 2-hour monitoring period was more consistent with the full 24-hour monitoring session than the single reading.

Larger studies have since compared shorter ABPM sessions to a full 24-hour session.13,20,21 Sheps, et al. found that a shortened ABPM session of 6 hours can predict the daytime mean blood pressure in a study of 126 normotensive patients and 168 mildly hypertensive patients not on treatment.20 Chanudet et al. evaluated the time span that most accurately predicted 24-hour mean blood pressure in 254 patients with normal or borderline elevated office blood pressure.21 They concluded that 1 and 2-hour intervals were poor predictors of mean 24-hour blood pressure but 4-hour intervals taken between 1000–2200 hours accurately estimated the daytime mean blood pressure. In a retrospective analysis of over 1000 ABPM sessions, we previously demonstrated that a 6-hour ABPM mean could approximate the mean blood pressure of a full 24-hour monitoring session.13 Our current study expands the utility of these results by examining agreement based upon the indication for ABPM referral. To our knowledge, it is the first study to analyze the predictive value of a shortened ABPM session across different clinical indications of referral.

Several limitations should be noted in our analysis. First, we examined only the first 6 hours of the session, which does not include the nighttime period, and period of strong predictive value for cardiovascular events.7 Future studies can vary the constituents of the 6-hour period, such as inclusion of hours later in the day or early evening, to improve agreement of a 6-hour mean with the 24-hour mean. Secondly, our study was a retrospective analysis of previously performed ABPM sessions. Prospective studies of a 6-hour session compared to that of a full session would be necessary to validate the predictive ability of the shorter session to accurately classify hypertensive status, as well as correlate with target organ damage. Finally, the predictive ability of the 6-hour period may vary significantly depending on the population in which it is employed. An unintended consequence of advocating 6-hour ABPM sessions could be more widespread use in populations where the underlying pre-test probability of having hypertension (or being uncontrolled) exists. A lower overall prevalence of hypertension in the population in which the test is ordered would result in a lower post-test probability and limit usefulness.

The advantages of out-of-office blood pressure measurements are numerous. For ABPM, a 24-hour period of evaluation is preferred as it is the basis upon which ABPM has demonstrated greater predictability for cardiovascular events than office measurements. However, ABPM is not available in all patients, can be associated with increased expense, and will not be accurate in patients with arrhythmias or extremes of body habitus. Several studies have observed that a series of carefully performed home measurements can provide similar agreement to ABPM and correlate with target organ damage.5,6 While home/self measurments may be a preferred alternative, not all patients comply with the request to obtain them. When home/self-measurements are unavailable, a limited 6-hour ABPM session may be an acceptable alternative for predicting the patient’s hypertensive status to make decisions about treatment. Such a session could potentially increase patient acceptance and physicians’ inclination to recommend such procedures, although this would need further prospective study. It is important to remember that a shortened ABPM session will not reflect the nighttime blood pressure, and would not be preferred when evaluation of circadian blood pressure variation is desirable.

A shortened ABPM session of 6 hours can accurately predict a patient’s hypertensive status as determined from their 24-hour ABPM session. The optimal systolic blood pressure threshold for comparison depends upon the indication for referral. Further prospective research is necessary to determine if a shortened ABPM session maintains its ability to predict target organ damage and cardiovascular risk, or provides an advantage over home/self-monitoring.


FN1Presented in part at the 21st annual meeting of the American Society of Hypertension, May 2008. New Orleans, LA.


The authors declare no conflict of interest.

Funding: This work was supported in part by the National Heart, Lung, and Blood Institute (1R01HL069801-01A1).

1. Pickering TG,Shimbo D,Haas D. Ambulatory blood-pressure monitoringN Engl J Med 2006;354:2368–2374. [pmid: 16738273]
2. Pickering TG,Miller NH,Ogedegbe G,Krakoff LR,Artiniann NT,Goff D. Call to action on use and reimbursement for home blood pressure monitoring: a joint scientific statement from the American Heart Association, American Society of Hypertension, and Preventive Cardiovascular Nurses AssociationHypertension 2008;52:10–29. [pmid: 18497370]
3. Staessen JA,Thijs L,Fagard R,O’Brien ET,Clement D,de Leeuw PW,et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial InvestigatorsJAMA 1999;282:539–546. [pmid: 10450715]
4. Clement DL,De Buyzere ML,De Bacquer DA,de Leeuw PW,Duprez DA,Fagard RH,et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertensionN Engl J Med 2003;348:2407–2415. [pmid: 12802026]
5. Stergiou GS,Argyraki KK,Moyssakis I,Mastorantonakis SE,Achimastos AD,Karamanos VG,Roussias LG. Home blood pressure is as reliable as ambulatory blood pressure in predicting target-organ damage in hypertensionAm J Hypertens 2007;20:616–621. [pmid: 17531917]
6. Gaborieau V,Delarche N,Gosse P. Ambulatory blood pressure monitoring versus self-measurement of blood pressure at home: correlation with target organ damageJ Hypertens 2008;26:1919–1927. [pmid: 18806615]
7. Ernst ME. Nighttime blood pressure is the blood pressurePharmacotherapy 2009;29:3–6. [pmid: 19113792]
8. The Seventh Report of the Joint National Committee on Prevention, Dectection, Evaluation, and Treatment on High Blood Pressure: The JNC-7 ReportJAMA 2003;289:2560–2572. [pmid: 12748199]
9. Ernst ME,Bergus GR. Favorable patient acceptance of ambulatory blood pressure monitoring in a primary care setting in the United States: a cross-sectional surveyBMC Fam Pract 2003;4:15. [pmid: 14533981]
10. Degaute JP,van de Borne P,Kerkhofs M,Dramaix M,Linkowski P. Does non-invasive ambulatory blood pressure monitoring disturb sleep?J Hypertens 1992;10:879–885. [pmid: 1325523]
11. Fravel MA,Ernst ME,Weber CA,Dawson JD,Carter BL,Bergus GR. Influence of patient characteristics on success of ambulatory blood pressure monitoringPharmacotherapy 2008;28:1341–1347. [pmid: 18956994]
12. Ernst ME,Bergus GR. Ambulatory blood pressure monitoringSouth Med J 2003;96:563–568. [pmid: 12938783]
13. Ernst ME,Weber CA,Dawson JD,O’Connor MA,Lin W,Carter BL,et al. How well does a shortened time interval characterize results of a full ambulatory blood pressure monitoring session?J Clin Hypertens (Greenwich) 2008;10:431–435. [pmid: 18550932]
14. Pickering TG,Hall JE,Appel LJ,Falkner BE,Graves JW,Hill MN,et al. Recommendations for blood pressure measurement in human and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure ResearchHypertension 2005;45:142–161. [pmid: 15611362]
15. Baumgart P,Kamp J. Accuracy of the SpaceLabs Medical 90217 ambulatory blood pressure monitorBlood Press Monit 1998;3:303–307. [pmid: 10212370]
16. Williams B,Lindholm LH,Sever P. Systolic pressure is all that mattersLancet 2008;371:2219–2221. [pmid: 18561995]
17. Wen SW,Kramer MS,Hoey J,Hanley JA,Usher RH. Terminal digit preference, random error, and bias in routine clinical measurement of blood pressureJ Clin Epidemiol 1993;46:1187–1193. [pmid: 8410103]
18. Yavuz BB,Yavuz B,Tayfur O,Cankurtaran M,Halil M,Ulger Z,et al. White coat effect and its clinical implications in the elderlyClin Exp Hypertens 2009;31:306–315. [pmid: 19811359]
19. Weber MA,Drayer JM,Wyle FA,Brewer DD. A representative value for whole-day BP monitoringJAMA 1982;248:1626–1628. [pmid: 7202056]
20. Sheps SG,Bailey KR,Zachariah PK. Short-term (six hour), ambulatory blood pressure monitoringJ Hum Hypertens 1994;8:873–878. [pmid: 7884784]
21. Chanudet X,Chau NP,Larroque P. Short-term representatives of daytime and night-time ambulatory blood pressuresJ Hypertens 1992;10:595–600. [pmid: 1320081]


[Figure ID: F1]
Figure 1 

Kappa statistics for agreement of the 6-hour mean systolic blood pressure with the 24-hour mean using varying 6-hour thresholds. (Fixed systolic blood pressure value of 130 mmHg used as the 24-hour reference point for controlled vs uncontrolled.)

Group I: borderline hypertension

Group II: evaluation of blood pressure control on mono or dual therapy

Group III: suspected white-coat hypertension

Group IV: treatment resistance

SBP: systolic blood pressure

[TableWrap ID: T1] Table 1 

Demographic characteristics of the study population.

Characteristic Mean ± SD
Age (years) 52.7 ±15.9
Body Mass Index (kg/m2) 29.5 ± 6.6
Session Duration (hours) 22.4 ± 3.3
Clinic Blood Pressure (mm Hg) 150/83 ± 20/11
No. (%) of Patients
Male 265 (50)
Successful sessions* 449 (84.7)
Indication for test
  Suspected white coat hypertension 137 (25.8)
  Borderline hypertension 126 (23.8)
  Evaluation of blood pressure control on therapy 148 (27.9)
  Resistant hypertension 64 (12.1)

*defined as ≥ 80% of attempted readings resulting in a successful measurement SD: standard deviation

[TableWrap ID: T2] Table 2 

Sensitivity and specificity of the 6-hour ABPM mean to predict controlled or uncontrolled blood pressure as determined from the 24-hour ABPM. (Fixed systolic blood pressure value of 130 mmHg used for the 24-hour mean reference point of control vs uncontrolled.)

6-hour Systolic Blood Pressure Threshold (mm Hg)
131 132 133 134 135 136 137 138 139
I Sensitivity 0.94 0.94 0.94 0.94 0.94 0.90 0.88 0.88 0.85
Specificity 0.62 0.66 0.69 0.73 0.76 0.78 0.88 0.93 0.93
II Sensitivity 0.87 0.87 0.87 0.85 0.85 0.85 0.83 0.80 0.79
Specificity 0.67 0.68 0.71 0.76 0.80 0.81 0.85 0.85 0.86
III Sensitivity 0.95 0.92 0.89 0.89 0.89 0.87 0.86 0.84 0.84
Specificity 0.51 0.58 0.59 0.63 0.70 0.74 0.80 0.82 0.84
IV Sensitivity 0.95 0.93 0.93 0.88 0.83 0.75 0.73 0.68 0.65
Specificity 0.71 0.79 0.83 0.83 0.88 0.92 0.92 0.92 0.92

TFN2Group I: borderline hypertension

TFN3Group II: evaluation of blood pressure control on mono or dual therapy

TFN4Group III: suspected white-coat hypertension

TFN5Group IV: treatment resistance

[TableWrap ID: T3] Table 3 

Summary of the agreement of the 6-hour systolic blood pressure mean with 24-hour mean.

ROC (SE), 6-hr vs 24-h
(using 130 mmHg as
reference standard
6-hour SBP Threshold
137 κ (SE) 0.657
88.9 (2.80) 83.6 (2.93) 82.5 (3.25) 79.7 (5.03)
Sensitivity 0.88 0.83 0.86 0.73
Specificity 0.88 0.85 0.80 0.92
LR+ 7.27 5.34 4.23 8.70
LR− 0.13 0.21 0.18 0.30
133 κ (SE) 0.765 (5.03)
89.1 (3.90)
Sensitivity 0.93
Specificity 0.83
LR+ 5.55
LR− 0.09
% absolute
value of
0.07 (0.004) 0.06 (0.004) 0.07 (0.004) 0.06 (0.006)

TFN6κ= Kappa; SE= standard error; LR= likelihood ratio; SBP=systolic blood pressure

TFN7Group I: borderline hypertension

TFN8Group II: evaluation of blood pressure control on mono or dual therapy

TFN9Group III: suspected white-coat hypertension

TFN10Group IV: treatment resistance

[TableWrap ID: T4] Table 4 

Summary Table

What is known about this topic What this study adds
Measurements from 24-hour ambulatory
blood pressure monitoring (ABPM) strongly
predict risk of cardiovascular events.
6-hour ABPM can approximate the mean
systolic blood pressure of a full 24-hour
monitoring session.
ABPM provides useful information in the
evaluation of suspected white-coat
hypertension, treatment resistance,
orthostatic hypotension, and episodic hypertension.
A 6-hour ABPM session can accurately
predict blood pressure control as
determined from a 24-hour session.
Not all appropriate candidates for ABPM are
able to undergo the procedure as it is
associated with significant cost, time
commitment, and occasional discomfort.
The ability of 6-hour ABPM to predict 24-
hour control is dependent on the indication
for referral and the associated reference

Article Categories:
  • Article

Keywords: ambulatory blood pressure, hypertension, shrot-term.

Previous Document:  A non-synonymous SNP within membrane metalloendopeptidase-like 1 (MMEL1) is associated with multiple...
Next Document:  The prevalence of metabolic syndrome and its components in two main types of primary aldosteronism.