Document Detail


Independent component analysis: an introduction.
MedLine Citation:
PMID:  15866182     Owner:  NLM     Status:  PubMed-not-MEDLINE    
Abstract/OtherAbstract:
Independent component analysis (ICA) is a method for automatically identifying the underlying factors in a given data set. This rapidly evolving technique is currently finding applications in analysis of biomedical signals (e.g. ERP, EEG, fMRI, optical imaging), and in models of visual receptive fields and separation of speech signals. This article illustrates these applications, and provides an informal introduction to ICA.
Authors:
James V Stone
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Trends in cognitive sciences     Volume:  6     ISSN:  1364-6613     ISO Abbreviation:  Trends Cogn. Sci. (Regul. Ed.)     Publication Date:  2002 Feb 
Date Detail:
Created Date:  2005-05-03     Completed Date:  2005-05-20     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9708669     Medline TA:  Trends Cogn Sci     Country:  England    
Other Details:
Languages:  eng     Pagination:  59-64     Citation Subset:  -    
Affiliation:
Psychology Department, Sheffield University, Sheffield, UK. j.v.stone@sheffield.ac.uk
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Mechanism of Aurora B activation by INCENP and inhibition by hesperadin.
Next Document:  RAP: a new framework for visual categorization.