Document Detail

In situ atomic-scale imaging of electrochemical lithiation in silicon.
MedLine Citation:
PMID:  23042490     Owner:  NLM     Status:  Publisher    
In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ transmission electron microscopy can be used to study the dynamic lithiation process of single-crystal silicon with atomic resolution. We observe a sharp interface (∼1 nm thick) between the crystalline silicon and an amorphous Li(x)Si alloy. The lithiation kinetics are controlled by the migration of the interface, which occurs through a ledge mechanism involving the lateral movement of ledges on the close-packed {111} atomic planes. Such ledge flow processes produce the amorphous Li(x)Si alloy through layer-by-layer peeling of the {111} atomic facets, resulting in the orientation-dependent mobility of the interfaces.
Xiao Hua Liu; Jiang Wei Wang; Shan Huang; Feifei Fan; Xu Huang; Yang Liu; Sergiy Krylyuk; Jinkyoung Yoo; Shadi A Dayeh; Albert V Davydov; Scott X Mao; S Tom Picraux; Sulin Zhang; Ju Li; Ting Zhu; Jian Yu Huang
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-10-07
Journal Detail:
Title:  Nature nanotechnology     Volume:  -     ISSN:  1748-3395     ISO Abbreviation:  Nat Nanotechnol     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-10-8     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101283273     Medline TA:  Nat Nanotechnol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases.
Next Document:  Selective molecular sieving through porous graphene.