Document Detail

Impaired fetal adrenal function in intrahepatic cholestasis of pregnancy.
Jump to Full Text
MedLine Citation:
PMID:  21525808     Owner:  NLM     Status:  MEDLINE    
BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease of unknown etiology. The aim of this study was to investigate the change in maternal and fetal adrenal function in clinical and experimental ICP.
MATERIAL/METHODS: The maternal and fetal serum levels of cortisol and dehydroepiandrosterone sulfate (DHEAS) were determined in 14 women with ICP and in pregnant rats with estrogen-induced intrahepatic cholestasis.
RESULTS: In women with ICP, the fetal serum cortisol and DHEAS levels were significantly higher than those in women with normal pregnancy, after correcting the impact of gestational age at delivery. The relationship between fetal cortisol and maternal cholic acid levels was bidirectional; the fetal cortisol tended to increase in mild ICP, while it decreased in severe ICP. In pregnant rats with estrogen-induced cholestasis, the fetal cortisol level was significantly lower in the group with oxytocin injection, compared with the group without oxytocin injection (191.92±18.86 vs. 272.71±31.83 ng/ml, P<0.05). In contrast, the fetal cortisol concentration was increased after oxytocin injection in normal control rats.
CONCLUSIONS: The data indicate that fetal stress-responsive system is stimulated in mild ICP, but it is suppressed in severe ICP, which might contribute to the occurrence of unpredictable sudden fetal death. Further studies are warranted to explore the role of impaired fetal adrenal function in the pathogenesis of ICP and the clinical implications.
Chunfang Wang; Xiaojun Chen; Shu-Feng Zhou; Xiaotian Li
Related Documents :
8329648 - Ectopic pregnancy.
21197678 - Perinatal outcome of prenatally diagnosed congenital talipes equinovarus.
12968948 - Enzymeimmunoassay of oestradiol, testosterone and progesterone in urine samples from fe...
21225958 - Management of cannabis use during pregnancy: an assessment of healthcare professionals'...
20298108 - Vitamin a supplementation in late pregnancy can decrease the incidence of bronchopulmon...
10518278 - Successful pregnancy in severe methylmalonic acidaemia.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Medical science monitor : international medical journal of experimental and clinical research     Volume:  17     ISSN:  1643-3750     ISO Abbreviation:  Med. Sci. Monit.     Publication Date:  2011 May 
Date Detail:
Created Date:  2011-04-28     Completed Date:  2011-08-17     Revised Date:  2013-06-30    
Medline Journal Info:
Nlm Unique ID:  9609063     Medline TA:  Med Sci Monit     Country:  Poland    
Other Details:
Languages:  eng     Pagination:  CR265-71     Citation Subset:  IM    
Department of Maternal and Fetal Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Adrenal Glands / physiopathology*
Case-Control Studies
Cholestasis, Intrahepatic / blood,  physiopathology*
Cholic Acid / metabolism
Dehydroepiandrosterone Sulfate / blood
Delivery, Obstetric
Fetus / metabolism,  physiopathology*
Hydrocortisone / blood
Liver Function Tests
Oxytocin / administration & dosage,  pharmacology
Rats, Sprague-Dawley
Reg. No./Substance:
50-23-7/Hydrocortisone; 50-56-6/Oxytocin; 651-48-9/Dehydroepiandrosterone Sulfate; 81-25-4/Cholic Acid

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Med Sci Monit
Journal ID (iso-abbrev): Med. Sci. Monit
Journal ID (publisher-id): Medical Science Monitor
ISSN: 1234-1010
ISSN: 1643-3750
Publisher: International Scientific Literature, Inc.
Article Information
Download PDF
© Med Sci Monit, 2011
Received Day: 09 Month: 11 Year: 2010
Accepted Day: 07 Month: 1 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 01 Month: 5 Year: 2011
Volume: 17 Issue: 5
First Page: CR265 Last Page: CR271
PubMed Id: 21525808
ID: 3539589
Publisher Id: 881766

Impaired fetal adrenal function in intrahepatic cholestasis of pregnancy
Chunfang Wang1ABCDEF
Xiaojun Chen1ABCD
Shu-Feng Zhou2CDEF
Xiaotian Li1ABCDEFG
1Department of Maternal and Fetal Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, U.S.A.
Correspondence: Xiaotian Li, Department of Maternal and Fetal Medicine, Obstetrics & Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011, China, e-mail: and Shu-Feng Zhou, Department of Pharmaceutical Sciences, College of Pharmacy, University of Florida, 12901 Bruce B Downs Blvd., MDC 30, Tampa, FL 33612, U.S.A., e-mail:
AStudy Design
BData Collection
CStatistical Analysis
DData Interpretation
EManuscript Preparation
FLiterature Search
GFunds Collection


Intrahepatic cholestasis of pregnancy (ICP), the most common liver disorder unique to pregnancy, is characterized by pruritus and biochemical disturbances in liver functional tests, occurring predominantly during the last trimester of pregnancy [16]. The incidence of ICP varies throughout the world, with the highest incidence in South America (Chile and Bolivia, 5–15%) [7]. The incidence of ICP in North American and most European countries is less than 1%. The adverse impact of ICP on perinatal outcome has been well documented, and is associated with increased preterm delivery, intrauterine fetal distress and unpredictable sudden fetal death [8]. Perinatal mortality ranges from 11% to 20% in untreated women with ICP [9,10]. The pathogenesis leading to intrauterine fetal death in ICP is still unclear. There is no convincing evidence that antepartum fetal monitoring with cardiotocography can prevent fetal death associated with ICP, nor is there clear-cut information about specific antepartum fetal monitoring that would be useful for identifying fetuses at increased risk of fetal death in this syndrome [10]. An increase in the levels of bile acids is considered to be the diagnostic hallmark of ICP. Tribe et al. [11] recently reported that measuring the longitudinal profiles of 15 individual bile acids is useful for diagnosis and monitoring of this disorder. ICP was associated with a clear rise in cholic acid conjugated with taurine and glycine from 24 weeks of pregnancy [11].

The etiology of ICP involves genetic, immune and hormonal factors, but is not fully understood [7,1214]. Hormonal factors may trigger the transient decompensation of the heterozygous state for genes encoding physiologically important hepatobiliary transporters and their nuclear regulators, and thus result in ICP [7,15,16]. These transporters include multidrug resistance protein 3 (ABCB4/MDR3), familial intrahepatic cholestasis type 1 (FIC1/ATP8B1), bile salt export pump (BSEP/ABCB11), and multidrug resistance protein 2 (MRP2/ABCC2), and their expression is tightly regulated by nuclear receptors such as pregnane X receptor (PXR) and farnesoid X receptor (FXR). ABCB4/MDR3 and ABCB11/BSEP are responsible for the biliary secretion of cholephilic compounds [17], and FIC1/ATP8B1 is a transporter for phosphatidylserine. Several studies have found that mutations of the ABCB4, ABCC2, ABCB11 and PXR genes are associated with ICP [7,15,16,1821]. Increased hepatic bile acid concentrations during pregnancy in mice are associated with reduced FXR activity [22]. In ICP placenta, 280 genes were found to be up-regulated and 112 were down-regulated [23]. ICP occurs mainly during the third trimester, when serum levels of estrogens and progesterone and their conjugating metabolites reach their peak. ICP is more common in twin (20–22%) or multiple pregnancies that are associated with higher levels of hormones than singleton pregnancies, and in women over the age of 35 years or women receiving in vitro fertilization treatment. Women with ICP have a higher incidence of gallstones, more severe and prolonged emesis and higher rates of drug sensitivities. Both estrogens and progesterone and their conjugates can cause direct hepatotoxicity [24]. The activity of several transporters such as BSEP/ABCB11 and MRP2/ABCC2 has been shown to be reduced by higher levels of estrogen glucuronides and progesterone [25,26]. In addition, estrogens down-regulated the expression of Na+-dependent taurocholate and organic anion transporters in hepatocytes [27].

The elevated levels of bile acids in maternal and fetal circulation and amnion fluid are biochemical characteristics of ICP, which are regarded as an unfavorable environmental factor for the fetus [10,28]. The adrenal gland is an important organ of the hypothalamic-pituitary-adrenal axis which is involved in fetal stress responses, and plays a major role in fetal survival under unfavorable conditions [29,30]. As such, we hypothesized that the fetal response to stress via this axis might be impaired in ICP, resulting in unfavorable perinatal outcomes. To test this hypothesis, we investigated the perinatal maternal and fetal adrenal function in women with ICP and in pregnant rats with estrogen-induced intrahepatic cholestasis.

Material and Methods
Patient selection and clinical data

This study was approved by the Clinical Ethics Committee of the Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China. From September 2004 to September 2005, 14 pregnant women with ICP were recruited as the ICP group, and 14 paired pregnant women without any complications were recruited as the control group. All subjects had well-dated pregnancies which were documented by ultrasound before 16 weeks’ gestation. The diagnostic criteria and management of ICP was as described by Lee et al. [31]. The ICP group terminated pregnancy before 38 weeks’ gestation or before onset of labor by lower segment caesarean section. The control group received elective lower segment caesarean section at term. Five milliliters of maternal and cord venous blood from the placental end of the cord were collected immediately after delivery for measurement of dehydroepiandrosterone sulfate (DHEAS) and cortisol.

Estrogen-induced intrahepatic cholestasis in rats

Female Sprague-Dawley rats weighing 190–210 g were obtained from Shanghai SLAC Laboratory Animal Co. (Shanghai, China). The rats were randomly divided into 4 groups: ICP without oxytocin (ICP+/Oxy−, n=8) or with oxytocin (ICP+/Oxy+, n=9), and normal pregnancy without oxytocin treatment (ICP−/Oxy−, n=9) and with oxytocin (ICP−/Oxy+, n=8). Two animals were housed per cage in a light-controlled room maintained at 22°C with a 12 h day/night cycle and were given free access to food and water. Experiments were performed on the 15th day of the pregnancy. ICP was modeled using 17α-ethinyl estradiol (Sigma-Aldrich Chemical Co, St Louis, MO, USA) 2.5 mg/kg body weight per day by subcutaneous injection for 5 consecutive days beginning on the 15th day of gestation. The control rats received only the vehicle (corn oil).

On the 21th day of gestation, all pregnant rats were killed by cervical dislocation between 1:00 p.m. and 3:00 p.m. to obviate effects of the circadian rhythm on corticosteroid secretion. Uterine contractions were induced by thigh muscle injection of oxytocin (3 U/kg body weight) in ICP and normal pregnancy groups 10 min before killing, while 0.9% saline was used as the control. The pregnant rats were killed within 30 sec after removal from their cage and the truncal blood was collected. Caesarean section was performed quickly and the blood of all live fetuses was collected by decapitation. The maternal and fetal blood samples were collected for determination of DHEAS and cortisol.

Determination of serum DHEAS and cortisol

Blood samples were collected in common plastic tubes, and were centrifuged immediately at 3000 g for 10 min. Serum was stored at −70°C until assay. The concentrations of DHEAS and cortisol were evaluated by radioimmunoassay using commercial kits in a single batch done in duplicate. The commercial kits for cortisol and DHEAS were purchased from Northern Biology Technological Research Institute, Beijing, China and Diagnostic Products Corp., Los Angeles, CA, USA, respectively.

Statistical analysis

Data are expressed as means ±SEM. Student’s t test was used for comparisons between 2 independent groups. In clinical data, a univariate general linear model was used to compare the differences in maternal and fetal cortisol and DHEAS levels between 2 groups using gestation week at delivery as a covariate (because the serum levels of cortisol and DHEAS were increased with increasing gestation age) [32,33]. The SPSS 12.0 statistical software package (SPSS Inc., Chicago, IL, USA) was used for all data analyses. A P value of <0.05 was considered statistically significant.


The clinical characteristics of the subjects are summarized in Table 1. As expected, the gestational age in the ICP group was significantly lower than the control group (36.2±0.8 vs. 38.5±0.2 weeks, P<0.05), and the birth weight was also significantly lower in the ICP group, with higher level of maternal bile acids than the healthy group (body weight: 2909±166 vs. 3356±102 g, P<0.05; maternal bile acid level: 21.69±3.13 vs. 6.50±3.94 μmol/L, P<0.01). There was no significant difference between the 2 groups regarding maternal age, gravidity, 5-minute Apgar scores after birth, and the systolic/diastolic (S/D) ratio of umbilical artery. There were no cases of neonatal asphyxia or intrauterine fetal death in either group.

The maternal and fetal hepatic functions in the 2 groups are shown in Table 2. The maternal levels of blood alanine aminotransferase, total bilirubin, conjugated bilirubin and total bile acid were significantly higher (P<0.05) in the ICP group than in the control group, but the maternal levels of albumin, globulin, cholesterol and triglyceride were comparable in the ICP and control groups. The fetal blood total bile acid was also significantly higher in the ICP group than in the control group.

As shown in Table 3, after being corrected for the impact of gestational age at delivery, the fetal serum levels of cortisol and DHEAS in the ICP group were significantly higher than in the control group (204.2±19.5 vs. 95.7±19.5 ng/ml, P<0.01; 252.2±22.1 vs. 111.2±22.1 μg/dl, P<0.01, respectively). However, the maternal cortisol and DHEAS levels were not significantly different between 2 groups.

Interestingly, we observed a bidirectional relationship between fetal serum cortisol and maternal serum cholic acid levels (Figure 1A). Fetal serum cortisol level increased with the elevation of maternal cholic acid level when maternal cholic acid was <2000 μg/dl. However, fetal serum cortisol level decreased with the elevation of maternal cholic acid level when maternal cholic acid was >2000 μg/dl. A similar relationship was also found between fetal serum DHEAS level and maternal cholic acid level (Figure 1B).

To further explore the impact of ICP on adrenal function, an estrogen-induced intrahepatic cholestasis rat model was constructed. Two pregnant rats in the ICP+/Oxy− group spontaneously labored on the 20th gestational day, all pups were alive, and the pregnancy in other rats was terminated on the 21th gestational day. The pup birth weight in ICP+/Oxy+ group was significantly lower than in the ICP−/Oxy+ group (4.13±0.30 vs. 4.94±0.34 g, P<0.05). Although a similar trend was observed between groups of ICP+/Oxy− and ICP−/Oxy− (4.20±0.25 vs. 4.39±0.13 g), the difference was statistically insignificant. The maternal body weight and the total alive pup numbers of each litter were insignificantly different among these 4 groups (Table 4).

Figure 2 showed maternal and fetal DHEAS and cortisol levels in ICP and normal pregnant rats with and without injection of oxytocin. Except for that the fetal serum cortisol levels in the ICP+/Oxy+ group was significantly lower than in the ICP+/Oxy− group (191.92±18.86 vs. 272.71±31.83 ng/ml, P<0.05) in rats with ICP, the concentrations of maternal, maternal and fetal DHEAS and cortisol trended to increase in the groups with oxytocin injection in both ICP and normal rats, compared with corresponding groups without oxytocin injection, although the differences were insignificant. In rats injected with oxytocin, maternal and fetal DHEAS levels in ICP groups were significantly higher than in normal groups (P<0.05), while the levels of maternal and fetal cortisol in ICP groups were significantly lower (P<0.05). In rats without injection of oxytocin, the differences in maternal and fetal DHEAS and cortisol were insignificant between the ICP and control groups.


Our above data have confirmed the hypothesis that fetuses have a stress-induced change of corticosteroid secretion in women with ICP, and the fetal adrenal gland might be impaired in severe ICP with high levels of maternal cholic acid. This may consequently affect fetal stress response to perinatal stressors, resulting in unfavorable perinatal outcomes in ICP, which was supported by our clinical data that the fetal cortisol and DHEAS trended to increase in women with mild ICP, but decrease in women with severe ICP, and that fetal serum cortisol was lowered after injection of oxytocin in rats with ICP.

In this study, the cord blood DHEAS and cortisol levels were used as an index of fetal adrenal function. Furthermore, the cord blood cortisol level has often been used as an index of fetal adrenal stress response [34]. The fetal adrenal gland was characterized by the presence of the fetal zone, which was the principal localization of DHEAS synthesis, the substrate for estrogen and cortisol synthesis in placenta [35], and the transitional zone that synthesizes cortisol de novo after the 28th week of pregnancy [36]. Furthermore, the presence of 11β-hydroxysteroid dehydrogenase (11-HSD2) serves as a barrier enzyme to control the passage of cortisol from mother to fetus [37]. Cortisol in the cord blood is primarily derived from the fetal adrenal gland in the third-trimester [38].

The increased circulating bile acids level, as an adverse environmental stressor, stimulated the stress-induced adaptive response to secrete corticosteroid in mild ICP. ICP has been associated with fetal growth restriction [39] and preterm premature rupture of the membranes [40], and fetal hypoxia [41]. These findings are in accordance with those of Rape et al. [4245] who reported that the activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis at midgestation is due to estrogen-induced changes in placental corticosteroid metabolism.

Several studies have found that bile acids had a cytotoxic effect, especially on actively metabolized cells, by damaging cell mitochondria, resulting in the disruption of the electronic respiratory chain, which led to ATP insufficiency and cell energy failure [4648]. More recently, bile acids were thought to cause oxidative damage by stimulating the generation of free oxygen radicals in mitochondria [4951]. As one of the most actively metabolic organs during pregnancy and the major organ to produce stress response, the fetal adrenal gland might be sensitive to the damaging effects of bile acids.

It has recently become clear that an adverse environment can activate the fetal neuroendocrine stress system, and the stress axis can deliver environmental signals into developmental responses [52]. Acceleration of maturation might occur in the brain and the lungs, as an adaptation to fetal stress [49]. These adaptive changes could represent a life-saving answer to moderate stress, with resultant earlier birth of a more mature newborn, and increased survival, if the unfavorable fetal environment was moderate [34].

Another interesting finding of this study is that the fetal adrenal gland was insulted, but the fetal stress-responding system was not in compensation, and the fetus could not adaptively respond to the adverse environmental factor. As such, initiative onset of labor in women with severe ICP may make the fetus vulnerable to unfavorable conditions and increase fetal morbidity and mortality. The most stressful fetal experience was birth itself, which was associated with a substantial increase of fetal stress hormones such as cortisol and catecholamines in normal pregnancy [28]. Therefore, we suggest that failure of the fetal stress system in women with severe ICP might contribute to unpredictable sudden fetal death.

Wang et al. [53] reported that 95% of the fetal death and stillbirth in ICP occurred after threatened premature labor and occasional uterine contractions, or at the early stage of labor. Glantz et al. [31,54] found that fetal complications did not arise until bile acid levels were ≥40 mmol/L. Active management by timely delivery at 37 weeks or before onset of labor could significantly reduce the stillbirth rate of ICP, including those with higher bile acids levels and with meconium passage.

There has been an increasing trend toward the active management of ICP [55], although clinicians have yet to discover adequate solutions to avert the morbidities and mortalities associated with this disease. It is believed that treating the clinical symptoms of cholestasis with 2–5 ursodeoxycholic acid will improve maternal symptoms, facilitate the prolongation of pregnancy, and improve fetal outcomes [55].


In summary, our study indicates that the fetal stress system is excited in mild ICP, but it is suppressed in severe ICP, which might contribute to the occurrence of unpredictable sudden fetal death. These findings may have a therapeutic implication when ICP is handled. Further studies are warranted to explore the role of impaired fetal adrenal function in the pathogenesis of ICP and the clinical implications.


fn8-medscimonit-17-5-cr265Conflict of interest statement

All authors have no conflicts of interest.

fn9-medscimonit-17-5-cr265Source of support: This study was partly supported by the National Key Basic Research Plan of China (973 Plan) (2010CB529500), the National High Technology Research and Development Program (863 program) (054119512), the Key Project of Clinical Disciplines of Chinese Ministry of Health (2007–353), National Science & Technology Key Program of the Eleventh Fiveyear Plan of China (2006BAI05A05), the Fund of Science and Technology Commission of Shanghai (Grant No.: 064909006), National Health Ministry Clinical Medicine Key program, National Science Fund of China (Grant No.: 30872777) and Shanghai Leading Academic Discipline Project (Grant No.: B117)

DHEA dehydroepiandrosterone sulfate
HP hypothalamic-pituitary-adrenal axis
IC intrahepatic cholestasis of pregnancy

1. Pusl T,Beuers U. Intrahepatic cholestasis of pregnancyOrphanet J Rare DisYear: 200722617535422
2. Hepburn IS,Schade RR. Pregnancy-associated liver disordersDig Dis SciYear: 20085323345818256934
3. Geenes V,Williamson C. Intrahepatic cholestasis of pregnancyWorld J GastroenterolYear: 20091520496619418576
4. Joshi D,James A,Quaglia A,et al. Liver disease in pregnancyLancetYear: 201037559460520159293
5. Pathak B,Sheibani L,Lee RH. Cholestasis of pregnancyObstet Gynecol Clin North AmYear: 2010372698220685553
6. Pan C,Perumalswami PV. Pregnancy-related liver diseasesClin Liver DisYear: 20111519920821112001
7. Lammert F,Marschall HU,Glantz A,Matern S. Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and managementJ HepatolYear: 20003310122111131439
8. Riely CA,Bacq Y. Intrahepatic cholestasis of pregnancyClin Liver DisYear: 200481677615062199
9. Alsulyman OM,Ouzounian JG,Ames-Castro M,Goodwin TM. Intrahepatic cholestasis of pregnancy: perinatal outcome associated with expectant managementAm J Obstet GynecolYear: 1996175957608885754
10. Lee RH,Incerpi MH,Miller DA,et al. Sudden fetal death in intrahepatic cholestasis of pregnancyObstet GynecolYear: 20091135283119155945
11. Tribe RM,Dann AT,Kenyon AP,et al. Longitudinal profiles of 15 serum bile acids in patients with intrahepatic cholestasis of pregnancyAm J GastroenterolYear: 20101055859519904249
12. Pauli-Magnus C,Meier PJ,Stieger B. Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancySemin Liver DisYear: 2010301475920422497
13. Karlsen TH,Hov JR. Genetics of cholestatic liver disease in 2010Curr Opin GastroenterolYear: 2010262515820042859
14. Yayi H,Danqing W,Shuyun L,Jicheng L. Immunologic abnormality of intrahepatic cholestasis of pregnancyAm J Reprod ImmunolYear: 2010632677320085564
15. Pauli-Magnus C,Meier PJ. Pharmacogenetics of hepatocellular transportersPharmacogeneticsYear: 2003131899812668915
16. Dixon PH,van Mil SW,Chambers J,et al. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancyGutYear: 2009585374418987030
17. Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasisDrug Metab RevYear: 2010424374520028269
18. Davit-Spraul A,Gonzales E,Baussan C,Jacquemin E. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspectsSemin Liver DisYear: 2010301344620422496
19. Lam P,Soroka CJ,Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver diseaseSemin Liver DisYear: 2010301253320422495
20. Castano G,Burgueno A,Fernandez Gianotti T,et al. The influence of common gene variants of the xenobiotic receptor (PXR) in genetic susceptibility to intrahepatic cholestasis of pregnancyAliment Pharmacol TherYear: 2010315839219958310
21. Kitsiou-Tzeli S,Traeger-Synodinos J,Giannatou E,et al. The c.504T>C (p.Asn168Asn) polymorphism in the ABCB4 gene as a predisposing factor for intrahepatic cholestasis of pregnancy in GreeceLiver IntYear: 2010304899119840247
22. Milona A,Owen BM,Cobbold JF,et al. Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor functionHepatologyYear: 20105213414920842631
23. Wei J,Wang H,Yang X,et al. Altered gene profile of placenta from women with intrahepatic cholestasis of pregnancyArch Gynecol ObstetYear: 20102818011019565256
24. Yamamoto Y,Moore R,Hess HA,et al. Estrogen receptor-a mediates 17a-ethynylestradiol causing hepatotoxicityJ Biol ChemYear: 2006281166253116606610
25. Huang L,Smit JW,Meijer DK,Vore M. Mrp2 is essential for estradiol-17b-D-glucuronide)-induced cholestasis in ratsHepatologyYear: 200032667210869290
26. Stieger B,Fattinger K,Madon J,et al. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liverGastroenterologyYear: 20001184223010648470
27. Simon FR,Fortune J,Iwahashi M,et al. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transportersAm J PhysiolYear: 1996271G1043528997249
28. Wang XD,Peng B,Yao Q,et al. Perinatal outcomes of intrahepatic cholestasis of pregnancy: analysis of 1210 casesZhonghua Yi Xue Za ZhiYear: 2006864464916677568
29. Gitau R,Fisk NM,Glover V. Human fetal and maternal corticotrophin releasing hormone responses to acute stressArch Dis Child Fetal Neonatal EdYear: 200489F293214711850
30. Wood CE. Fetal stress. Focus on “effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia” by Thakor and GiussaniAm J Physiol Regul Integr Comp PhysiolYear: 2009296R888919020289
31. Lee RH,Kwok KM,Ingles S,et al. Pregnancy outcomes during an era of aggressive management for intrahepatic cholestasis of pregnancyAm J PerinatolYear: 2008253414518509787
32. Mastorakos G,Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartumAnn NY Acad SciYear: 20039971364914644820
33. Mesiano S,Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortexEndocr RevYear: 1997183784039183569
34. Gitau R,Menson E,Pickles V,et al. Umbilical cortisol levels as an indicator of the fetal stress response to assisted vaginal deliveryEur J Obstet Gynecol Reprod BiolYear: 200198141711516793
35. Challis JR,Sloboda DM,Alfaidy N,et al. Prostaglandins and mechanisms of preterm birthReproductionYear: 200212411712090913
36. Murphy VE,Smith R,Giles WB,Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetusEndocr RevYear: 2006271416916434511
37. Gitau R,Fisk NM,Teixeira JM,et al. Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responsesJ Clin Endocrinol MetabYear: 200186104911231985
38. Trainer PJ. Corticosteroids and pregnancySemin Reprod MedYear: 2002203758012536360
39. Yoon BH,Romero R,Jun JK,et al. An increase in fetal plasma cortisol but not dehydroepiandrosterone sulfate is followed by the onset of preterm labor in patients with preterm premature rupture of the membranesAm J Obstet GynecolYear: 19981791107149822483
40. Procianoy RS,Giacomini CB,Oliveira ML. Fetal and neonatal cortical adrenal function in birth asphyxiaActa Paediatr ScandYear: 198877671742974231
41. Pepe GJ,Waddell BJ,Albrecht ED. Activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis at midgestation by estrogen-induced changes in placental corticosteroid metabolismEndocrinologyYear: 19901273117232249642
42. Spivey JR,Bronk SF,Gores GJ. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calciumJ Clin InvestYear: 19939217248325981
43. Krahenbuhl S,Talos C,Fischer S,Reichen J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondriaHepatologyYear: 199419471797904981
44. Rolo AP,Oliveira PJ,Moreno AJ,Palmeira CM. Bile acids affect liver mitochondrial bioenergetics: possible relevance for cholestasis therapyToxicol SciYear: 2000571778510966524
45. Palmeira CM,Rolo AP. Mitochondrially-mediated toxicity of bile acidsToxicologyYear: 200420311515363577
46. Shivaram KN,Winklhofer-Roob BM,Straka MS,et al. The effect of idebenone, a coenzyme Q analogue, on hydrophobic bile acid toxicity to isolated rat hepatocytes and hepatic mitochondriaFree Radic Biol MedYear: 199825480929741584
47. Sokol RJ,Devereaux M,Khandwala R,O’Brien K. Evidence for involvement of oxygen free radicals in bile acid toxicity to isolated rat hepatocytesHepatologyYear: 199317869818387948
48. Sharma R,Majer F,Peta VK,et al. Bile acid toxicity structure-activity relationships: correlations between cell viability and lipophilicity in a panel of new and known bile acids using an oesophageal cell line (HET-1A)Bioorg Med ChemYear: 20101868869520713311
49. Amiel-Tison C,Cabrol D,Denver R,et al. Fetal adaptation to stress. Part I: acceleration of fetal maturation and earlier birth triggered by placental insufficiency in humansEarly Hum DevYear: 200478152715177669
50. Amiel-Tison C,Cabrol D,Denver R,et al. Fetal adaptation to stress: Part II. Evolutionary aspects; stress-induced hippocampal damage; long-term effects on behavior; consequences on adult healthEarly Hum DevYear: 200478819415223113
51. Copple BL,Jaeschke H,Klaassen CD. Oxidative stress and the pathogenesis of cholestasisSemin Liver DisYear: 20103019520420422501
52. Amiel-Tison C,Pettigrew AG. Adaptive changes in the developing brain during intrauterine stressBrain DevYear: 19911367761892222
53. Glantz A,Marschall HU,Mattsson LA. Relationships between bile acid levels and fetal complication ratesHepatologyYear: 2004404677415368452
54. Roncaglia N,Arreghini A,Locatelli A,et al. Obstetric cholestasis: outcome with active managementEur J Obstet Gynecol Reprod BiolYear: 20021001677011750958
55. Mays JK. The active management of intrahepatic cholestasis of pregnancyCurr Opin Obstet GynecolYear: 201022100320124899

Article Categories:
  • Clinical Research

Keywords: cortisol, dehydroepiandrosterone sulfate, intrahepatic cholestasis of pregnancy, fetal death, cholic acid, human, rat.

Previous Document:  Comprehensive behavioral analysis of patients with a major depressive episode.
Next Document:  Anxiety, depression and methods of stress coping in patients with nicotine dependence syndrome.