Document Detail

Immunohistochemical Expression of RAGE and Its Ligand (S100A9) in Cervical Lesions.
MedLine Citation:
PMID:  23340902     Owner:  NLM     Status:  Publisher    
Altered expressions of receptor for advanced glycation end-products (RAGE) and its ligand (S100A9) are observed in many cancers and play a key role in inflammation-associated cancer. In our previous study, by two-dimensional gel electrophoresis followed by mass spectrometry, the expression of S100A9 protein was found to increase in squamous cervical cancer compared with adjacent normal cervical tissues. Therefore, in the present study we observed the expressions of S100A9 and RAGE in 30 chronic cervicitis, 50 cervical intraepithelial neoplasia (CIN), and 40 squamous cervical cancer (SCC) using immunohistochemical analysis and analyzed the differential expression and possible role of S100A9 and RAGE in cancer development. Immunohistochemical findings were as follows: the expressions of S100A9 and RAGE were demonstrated in chronic cervicitis, CIN, and SCC. Moreover, their expressions were gradually increasing as the tumor progressed. In SCC, the staining scores of S100A9 and RAGE were significantly higher in well-differentiated tumors compared to moderately and poorly differentiated tumors. The expression of S100A9 in epithelial cells exhibited a positive correlation to RAGE expression in chronic cervicitis, CIN, and SCC. There were no significant difference of S100A9 immunoreactivity in stromal cells among chronic cervicitis, CIN, and SCC. Moreover, there was no correlation between S100A9 immunoreactivity in stromal cells of SCC and clinicopathological parameters. Finally, double immunohistochemistry illustrated that RAGE and S100A9 co-express in SCC. In conclusion, RAGE binds its ligand (S100A9), which plays an important role in the development of SCC. In addition, the expressions of S100A9 and RAGE in SCC tumor cells were closely associated with histological differentiation.
Xuejie Zhu; Lanying Jin; Shuangwei Zou; Qi Shen; Wenxiao Jiang; Wenjing Lin; Xueqiong Zhu
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2013-1-23
Journal Detail:
Title:  Cell biochemistry and biophysics     Volume:  -     ISSN:  1559-0283     ISO Abbreviation:  Cell Biochem. Biophys.     Publication Date:  2013 Jan 
Date Detail:
Created Date:  2013-1-23     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9701934     Medline TA:  Cell Biochem Biophys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Department of Obstetrics and Gynecology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, 325000, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Experimental determination of chemical diffusion within secondary organic aerosol particles.
Next Document:  Shape selective plate-form Ga(2)O(3) with strong metal-support interaction to overlying Pd for hydro...