Document Detail


Identifying New Lignin Bioengineering Targets: Impact of Epicatechin, Quercetin Glycoside, and Gallate Derivatives on the Lignification and Fermentation of Maize Cell Walls.
MedLine Citation:
PMID:  22475000     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Apoplastic targeting of secondary metabolites compatible with monolignol polymerization may provide new avenues for designing lignins that are less inhibitory toward fiber fermentation. To identify suitable monolignol substitutes, we artificially lignified primary maize cell walls with normal monolignols plus various epicatechin, quercetin glycoside, and gallate derivatives added as 0 or 45% by weight of the precursor mixture. The flavonoids and gallates had variable effects on peroxidase activity, but all dropped lignification pH. Epigallocatechin gallate, epicatechin gallate, epicatechin vanillate, epigallocatechin, galloylhyperin, and pentagalloylglucose formed wall-bound lignin at moderate to high concentrations and their incorporation increased 48 h in vitro ruminal fiber fermentability by 20 to 33% relative to lignified controls. By contrast, ethyl gallate and corilagin severely depressed lignification and increased 48 h fermentability by about 50%. The results suggest several flavonoid and gallate derivatives are promising lignin bioengineering targets for improving the inherent fermentability of non-pretreated cell walls.
Authors:
John H Grabber; Dino Ress; John Ralph
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-4-4
Journal Detail:
Title:  Journal of agricultural and food chemistry     Volume:  -     ISSN:  1520-5118     ISO Abbreviation:  -     Publication Date:  2012 Apr 
Date Detail:
Created Date:  2012-4-5     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0374755     Medline TA:  J Agric Food Chem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  A PAPER-BASED ANALYTICAL DEVICE FOR ELECTROCHEMICAL FLOW INJECTION ANALYSIS OF GLUCOSE IN URINE.
Next Document:  Crystal Structure and Phototransistor Behavior of N-substituted Heptacene.