Document Detail

Identification of displaced endometrial glands and embryonic duct remnants in female fetal reproductive tract: possible pathogenetic role in endometriotic and pelvic neoplastic processes.
MedLine Citation:
PMID:  23227010     Owner:  NLM     Status:  PubMed-not-MEDLINE    
BACKGROUND: Recent findings strongly promoted the hypothesis that common pelvic gynecological diseases including endometriosis and ovarian neoplasia may develop de novo from ectopic endometrial-like glands and/or embryonic epithelial remnants. To verify the frequency, the anatomical localization and the phenotype of misplaced endometrial tissue along the fetal female reproductive tract, histological and immunohistochemical analyses of uteri, fallopian tubes, and uterosacral ligaments were performed.
METHODS: Reproductive organs were collected from seven female fetuses at autopsy, five of them from gestational ages between 18 and 26 weeks and two fetuses with gestational ages of 33 and 36 weeks deceased of placental anomalies. Serial sections from areas containing ectopic glands and embryonic duct residues were analyzed by histological and immunohistochemical procedures.
RESULTS: Numerous ectopic endometrial glands and stroma were detected in the myometrium in two fetuses with low levels of expression of estrogen receptor-alpha (ER-α) and progesterone receptors (PR). The embryonic ducts were localized in the uterine broad and ovarian ligaments and under the fallopian tube serosa in six fetuses. Low levels of steroid receptors expression were found in the embryonic residues, whereas the carcino-embryonic antigen (CEA) and the tumor marker Ca 125 were not detected. The embryonic residues stromal component strongly expressed the CD 10 and vimentin proteins.
CONCLUSION: The anatomical and the immunohistochemical features of the ectopic organoid structures identified in fetal female reproductive tract suggest that endometriotic as well as neoplastic disease in adult women may develop on the basis of misplaced endometrial glands and/or embryonic cell remnants.
Jean Bouquet de Jolinière; Jean Marc Ayoubi; Guy Lesec; Pierre Validire; Alexandre Goguin; Luca Gianaroli; Jean Bernard Dubuisson; Anis Feki; Jean Gogusev
Publication Detail:
Type:  Journal Article     Date:  2012-12-03
Journal Detail:
Title:  Frontiers in physiology     Volume:  3     ISSN:  1664-042X     ISO Abbreviation:  Front Physiol     Publication Date:  2012  
Date Detail:
Created Date:  2012-12-11     Completed Date:  2012-12-12     Revised Date:  2014-07-31    
Medline Journal Info:
Nlm Unique ID:  101549006     Medline TA:  Front Physiol     Country:  Switzerland    
Other Details:
Languages:  eng     Pagination:  444     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Contribution of oxidative stress to endothelial dysfunction in hypertension.
Next Document:  How parts make up wholes.