Document Detail

Hypoxic level and duration differentially affect embryonic organ system development of the chicken (Gallus gallus).
MedLine Citation:
PMID:  23155030     Owner:  NLM     Status:  In-Data-Review    
Hypoxia inhibits avian embryonic development, as well as increases embryonic mortality. However, the key organ systems affected by hypoxia, and their critical windows for development, are poorly understood. Consequently, chicken embryos were continuously exposed to 3 levels of oxygen (21, 15, or 13% O(2)) throughout d 0 to 10, d 11 to 18, or d 0 to 18 of incubation, followed by morphometric and blood physiological measurements. Hypoxia occurring early during incubation (d 0 to 10) had larger effects on embryonic mortality and organ growth than hypoxia occurring at later stages (d 10 to 18). Growth of the heart and chorioallantoic membrane was stimulated by chronic hypoxia, whereas the lung, brain, eye, liver, stomach, beak, and toes showed no disruption. Sustained hypoxia from the beginning of incubation decreased blood hemoglobin, hematocrit, and red blood cell concentration of embryos at d 10, but the values among hypoxic and normoxic groups were not significantly different at d 18. Blood partial pressure of O(2) and partial pressure of CO(2) were dependent upon incubation O(2) level at a given day of development. These results indicated that either modest hypoxia (15% O(2)) throughout development, or hypoxia at any level during the late stages (d 11 to 18), increased the heart and chorioallantoic membrane weight, which partly compensated for the detrimental effects of hypoxia on embryonic development. We conclude that the first half of embryonic development contained the critical windows for the detrimental effects of hypoxia, and the second half contained the critical windows for the compensatory response of hypoxia in key organs.
H Zhang; W W Burggren
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Poultry science     Volume:  91     ISSN:  0032-5791     ISO Abbreviation:  Poult. Sci.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-11-16     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0401150     Medline TA:  Poult Sci     Country:  United States    
Other Details:
Languages:  eng     Pagination:  3191-201     Citation Subset:  IM    
College of Animal Science and Technology, China Agricultural University, Beijing, China 100193; and.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Microarray analysis revealed that immunity-associated genes are primarily regulated by roxarsone in ...
Next Document:  Adhesion and invasion to duck embryo fibroblast cells by Riemerella anatipestifer.