Document Detail

Hyperthermia worsens ischaemic brain injury through destruction of microvessels in an embolic model in rats.
MedLine Citation:
PMID:  22235782     Owner:  NLM     Status:  In-Data-Review    
Purpose: Basal lamina is a major part of the microvascular wall and plays a critical role in the integrity of microvasculature. The aim of this study is to determine whether hyperthermia worsens the destruction of microvascular integrity in the ischaemic injured brain. Materials and methods: Focal cerebral ischaemia was induced by embolising a pre-formed clot into the middle cerebral artery (MCA). Rats received either normothermic or hyperthermic treatment. Neurological score and infarct size were evaluated at 24 h after the MCA occlusion. Microvascular collagen type IV and laminin were measured with fluorescence microscopy. The activities of matrix metalloproteinases (MMP-2 and MMP-9) and plasminogen activators (tPA and uPA) were determined by zymography. Results: Treatment with hyperthermia significantly increased infarct volume (p < 0.01), cortex swelling (p < 0.01), striatum swelling (p < 0.05) and neurologic score (p < 0.01) at 24 h after the MCA occlusion. Compared to the normothermic groups, hyperthermia significantly worsened the losses of microvascular basal lamina structure proteins, collagen type IV and laminin, at 6 h (p < 0.001) and 24 h (p < 0.01) after MCA occlusion. Hyperthermia increased the MMP-9 activity at 6 and 24 h after MCA occlusion compared with normothermia (p < 0.05), whereas increased the MMP-2 activity at 6 h only (p < 0.05). Hyperthermia also elevated uPA activity significantly at 6 and 24 h after MCA occlusion compared to normothermia (p < 0.05). Conclusions: These results demonstrate that hyperthermia exacerbates the destruction of microvascular integrity possibly by increasing the activities of MMP-2, MMP-9 and uPA in the ischaemic cerebral tissues.
Qiang Meng; Chunyan He; Ashfaq Shuaib; Chen Xu Wang
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group     Volume:  28     ISSN:  1464-5157     ISO Abbreviation:  Int J Hyperthermia     Publication Date:  2012  
Date Detail:
Created Date:  2012-01-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8508395     Medline TA:  Int J Hyperthermia     Country:  England    
Other Details:
Languages:  eng     Pagination:  24-32     Citation Subset:  IM    
Department of Neurology, the First People's Hospital of Yunnan Province , Kunming , PR China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Priming of the sweat glands explains reflex sweating in the heat.
Next Document:  Modified vaccinia virus Ankara delivers a robust surrogate marker for immune monitoring to sarcoma c...