Document Detail

Hydrogen Sulfide Endothelin-Induced Myocardial Hypertrophy in Rats and the Mechanism Involved.
MedLine Citation:
PMID:  24980860     Owner:  NLM     Status:  Publisher    
The aim of the study was to evaluate the clinical efficacy of hydrogen sulfide (H2S) treatment on the endothelin-induced cardiac hypertrophy. Sixty-four adult male rats, weighing from 180 to 200 g, were randomly divided into four groups: ten in normal group, ten in sham group, 44 in model group established by inducing the myocardial hypertrophy with endothelin. The myocardial hypertrophy model rats were randomly divided into two groups: 22 in the simple myocardial hypertrophy model group and 22 in the H2S treatment group. Rats in normal group were given 2 ml pure water by gavage per day, those in the sham group and simple cardiac hypertrophy model group were given 2 ml of saline by gavage per day, and rats in the pure cardiac hypertrophy with H2S treatment were given intraperitoneal injections of 2 ml NaHS saline per day for a period of 4 weeks. Left ventricular mass index, myocyte hypertrophy, volume fraction of myocardial interstitial collagen, myocardial hydroxyproline content and other indicators of cardiac hypertrophy were observed after 4 weeks. (1) There were significant differences on the ventricular mass between the treatment group and the cardiac hypertrophy group: The left ventricular mass decreased 21.4 % and the left ventricular mass index decreased 5.97 % (P < 0.05; (2) the smallest cardiomyocytes diameter and cardiomyocytes cross-sectional area decreased 12.5 and 10.8 %, respectively (P < 0.05) in the treatment group compared to the cardiac hypertrophy group; (3) the volume fraction of myocardial interstitial collagen and the myocardial hydroxyproline content decreased 22.3 and 31.3 % in treatment group compared with the cardiac hypertrophy group, respectively (P < 0.05). H2S had a good clinical efficacy in reducing left ventricular mass fraction and myocardial collagen levels, improving myocardial hypertrophy and decrease myocardial fibrosis. It is worthy for further clinical studies.
Fengyong Yang; Zhen Liu; Yajing Wang; Zhaoxin Li; Haichu Yu; Qixin Wang
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-7-1
Journal Detail:
Title:  Cell biochemistry and biophysics     Volume:  -     ISSN:  1559-0283     ISO Abbreviation:  Cell Biochem. Biophys.     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-7-1     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9701934     Medline TA:  Cell Biochem Biophys     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Task shifting from doctors to non-doctors for initiation and maintenance of antiretroviral therapy.
Next Document:  Polar Characterization of Antifungal Peptides from APD2 Database.