Document Detail

Human parvovirus 4 viremia in young children, Ghana.
Jump to Full Text
MedLine Citation:
PMID:  23017590     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Authors:
Jürgen May; Jan Felix Drexler; Ulrike Reber; Nimarko Sarpong; Ohene Adjei; Marcus Panning; Christian Drosten; Anna Maria Eis-Hübinger
Publication Detail:
Type:  Letter; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Emerging infectious diseases     Volume:  18     ISSN:  1080-6059     ISO Abbreviation:  Emerging Infect. Dis.     Publication Date:  2012 Oct 
Date Detail:
Created Date:  2012-09-28     Completed Date:  2013-02-19     Revised Date:  2013-07-11    
Medline Journal Info:
Nlm Unique ID:  9508155     Medline TA:  Emerg Infect Dis     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1690-2     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Child, Preschool
DNA, Viral / blood
Female
Genotype
Ghana / epidemiology
Humans
Infant
Male
Molecular Sequence Data
Parvoviridae Infections / epidemiology*,  virology
Parvovirus / classification*,  genetics
Sequence Analysis, DNA
Viral Load
Viremia / epidemiology*,  virology
Chemical
Reg. No./Substance:
0/DNA, Viral
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Emerg Infect Dis
Journal ID (iso-abbrev): Emerging Infect. Dis
Journal ID (publisher-id): EID
ISSN: 1080-6040
ISSN: 1080-6059
Publisher: Centers for Disease Control and Prevention
Article Information
Download PDF

Print publication date: Month: 10 Year: 2012
Volume: 18 Issue: 10
First Page: 1690 Last Page: 1692
PubMed Id: 23017590
ID: 3471612
Publisher Id: 11-1836
DOI: 10.3201/eid1810.111836

Human Parvovirus 4 Viremia in Young Children, Ghana Alternate Title:Human PARV4 Viremia in Young Children, Ghana
Jürgen May
Jan Felix Drexler
Ulrike Reber
Nimarko Sarpong
Ohene Adjei
Marcus Panning
Christian Drosten
Anna Maria Eis-Hübinger
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany (J. May);
University of Bonn Medical Centre, Bonn, Germany (J.F. Drexler, U. Reber, C. Drosten, A.M. Eis-Hübinger);
Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (N. Sarpong);
Kumasi Centre for Collaborative Research in Tropical Medicine Kumasi (O. Adjei);
and Freiburg University Medical Center, Freiburg, Germany (M. Panning)
Correspondence: Address for correspondence: Anna Maria Eis-Hübinger, Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; email: anna-maria.eis-huebinger@ukb.uni-bonn.de

To the Editor: Establishment of viremia is a characteristic feature of infection with human parvovirus 4 (PARV4). In northern Europe, PARV4 (human partetravirus) is primarily transmitted by blood-borne routes (1,2). In other areas (southern Europe, western Africa, South Africa, Asia) infection seems to be more widespread, suggesting alternative modes of virus acquisition (36).

We reported PARV4 genotype 3 viremia in young children with unknown parenteral blood exposure from the rural Ashanti region of Ghana (7). In that study, 2 (2.1%) of 94 children (median age 14.9 months) and 22 (11.9%) of 185 children (median age 24.0 months) were virus positive (ages of the 2 virus-positive children from the younger cohort 14.9 and 15.6 months). Because the number of infants was small in that study, we extended our investigations on PARV4 viremia to an additional cohort of 15-month-old children from the same study group.

Plasma samples from 361 randomly selected children (191 girls) were tested. Specimens were collected during January–December 2004 during a trial of intermittent preventive malaria treatment in the rural Afigya Sekyere District, Ashanti Region, Ghana (7). Plasma samples were analyzed because of limited availability of whole blood samples. Median age of children was 14.9 months (range 13.8–17.5 months, interquartile range 14.5–15.2 months).

Nucleic acid was prepared from 200-μL plasma samples by using the NucliSENS EasyMAG system (bioMérieux, Nürtingen, Germany). All samples were analyzed by using 2 real-time PCRs and primers described elsewhere (7,8). The limit of detection was ≈200 plasmid copies/mL. Strict precautions were applied during plasma handling and amplification to avoid false-positive results.

PARV4 genotype 3 DNA was detected in plasma of 32 (8.9%) of 361 children. Viral load ranged from ≈200 copies/mL to 3.0 × 104 copies/mL (Figure). Median viral load was 453 copies/mL. Nucleotide sequencing of screening PCR amplicons and additional genomic regions amplified from 6 plasma samples identified the viruses as PARV4 genotype 3 (GenBank accession nos. JN183933–JN183938). There was no association between history of fever, anemia, or erythema in children with or without PARV4 viremia (p>0.05, by χ2 test).

PARV4 viremia status was already known for 78 children 24 months of age (7). These data enabled comparison of viremia at 2 time points (24 months and 15 months of age). Of these 78 children, 10 had viremia (viral load range 4.0 × 102–1.4 × 104 copies/mL) and 3 (3.8%) showed viremia at both time points and identical viral nucleotide sequences (time between bleedings 8.7 months for 2 children and 9.0 months for 1 child). However, only short genomic regions (780 nt for 1 child, 599 nt for a second child, and 95 nt for a third child) could be amplified and sequenced because of low viral loads. Four children had positive results in the first sample, and 3 had positive results in the second sample.

Because comparison of large and contiguous parts of the viral genomes within each sample pair was not possible and serologic data were lacking, PARV4 positivity over a 9-month period can be interpreted by 3 hypotheses. First, detection of PARV4 DNA over time might represent long-term viremia after infection, similar to observations in human parvovirus B19 infection. Second, demonstration of PARV4 during widely spaced intervals might indicate endogenous reactivation of viremia. Third, exogenous reinfection might have occurred.

PARV4 viremia was detected in a study in the United Kingdom among 110 PARV4-negative persons with hemophilia screened over 5 years for PARV4 viremia and seroconversion (IgG and IgM) (9). Nine patients who seroconverted were identified, and 1 had PARV4 viremia (genotype 1) over an 8-month period. Viral loads for this patient were low (<103 copies/mL), a finding similar to ours for the 3 children. However, negative IgM results in the person with hemophilia suggest that the sampling window might have missed the acute infection.

Comparison of results of our study with those of our previous study (7) showed 2 differences. First, frequency of viremia in children tested previously at 15 months of age was lower (2.1%, 2/94) than in the children in this study (8.9%). Second, median viral loads differed by nearly 1 log10, with the higher concentrations in the previous study analyzing EDTA whole blood. Whether these differences were caused by the relatively small number of children included or by the fact that whole-blood samples were compared with plasma samples remains to be clarified. However, our previous hypothesis that prenatal or perinatal transient infection was an unlikely mode of virus acquisition needs to be modified because PARV4 infection in newborns has recently been demonstrated (10).

Although we lacked IgM and IgG serologic data to interpret our findings, our study suggests that PARV4 genotype 3 infection might be characterized by viral persistence, reactivation, or reinfection. Additional longitudinal studies, including serologic testing for short intervals, are needed to determine the pathogenesis and potential public health role of PARV4 infection.


Notes

Suggested citation for this article: May J, Drexler JF, Reber U, Sarpong N, Adjei O, Panning M, et al. Human parvovirus 4 viremia in young children, Ghana [letter]. Emerg Infect Dis [Internet]. 2012 Oct [date cited]. http://dx.doi.org/10.3201/eid1810.111836

This study was supported by grants from the Union Bank of Switzerland Optimus Foundation to J.M. and C.D., the European Union FP7 project European Management Platform for Emerging and Re-emerging Infectious Disease Entities (grant no. 223498), the German Research Foundation (grant DR 772/3-1), and BONFOR to A.M.E.-H. (grant O-151.0021).


References
1. . SimmondsP, ManningA, KenneilR, CarnieFW, BellJEParenteral transmission of the novel human parvovirus PARV4.Emerg Infect Dis. Year: 2007;13:1386–810.3201/eid1309.07042818252117
2. . LahtinenA, KivelaP, HedmanL, KumarA, KanteleA, LappalainenM, et al. Serodiagnosis of primary infections with human parvovirus 4, Finland.Emerg Infect Dis. Year: 2011;17:79–8210.3201/eid1701.10075021192859
3. . TouinssiM, BrisbarreN, PicardC, FrassatiC, DussolB, UchR, et al. Parvovirus 4 in blood donors, France.Emerg Infect Dis. Year: 2010;16:165–610.3201/eid1601.09051720031076
4. . SharpCP, VermeulenM, NébiéY, DjokoCF, LeBretonM, TamoufeU, et al. Epidemiology of human parvovirus 4 infection in sub-Saharan Africa.Emerg Infect Dis. Year: 2010;16:1605–710.3201/eid1610.10100120875290
5. . BenjaminLA, LewthwaiteP, VasanthapuramR, ZhaoG, SharpC, SimmondsP, et al. Human parvovirus 4 as potential cause of encephalitis in children, India.Emerg Infect Dis. Year: 2011;17:1484–721801629
6. . YuX, ZhangJ, HongL, WangJ, YuanZ, ZhangX, et al. High prevalence of human parvovirus 4 infection in HBV and HCV infected individuals in Shanghai.PLoS ONE. Year: 2012;7:e2947410.1371/journal.pone.002947422235298
7. . PanningM, KobbeR, VollbachS, DrexlerJF, AdjeiS, AdjeiO, et al. Novel human parvovirus 4 genotype 3 in infants, Ghana.Emerg Infect Dis. Year: 2010;16:1143–610.3201/eid1607.10002520587191
8. . FryerJF, DelwartE, HechtFM, BernardinF, JonesMS, ShahN, et al. Frequent detection of the parvoviruses, PARV4 and PARV5, in plasma from blood donors and symptomatic individuals.Transfusion. Year: 2007;47:1054–6110.1111/j.1537-2995.2007.01235.x17524097
9. . SharpCP, LailA, DonfieldS, GompertsED, SimmondsPVirologic and clinical features of primary infection with human parvovirus 4 in subjects with hemophilia: frequent transmission by virally inactivated clotting factor concentrates.Transfusion. Year: 2012;52:1482–910.1111/j.1537-2995.2011.03420.x22043925
10. . ChenMY, YangSJ, HungCCPlacental transmission of human parvovirus 4 in newborns with hydrops, Taiwan.Emerg Infect Dis. Year: 2011;17:1954–610.3201/eid1710.10184122000381

Figures

[Figure ID: F1]
Figure 

Parvovirus 4 DNA loads in virus-positive plasma specimens from children compared with those in whole blood samples previously tested (7), Ghana. Virus concentrations are given on a log scale on the y-axis. Each dot represents 1 specimen. Horizontal lines represent median values for each sample group. Children whose plasma was tested had a median age of 15 months, and children whose whole blood was tested had a median age of either 15 or 24 months. Viral load data (i. e., median viral load and range) for the 2 groups of whole blood samples have been reported (7) and were included for comparison with plasma data from this study.



Article Categories:
  • Letters to the Editor
Article Categories:
  • Letter

Keywords: Keywords: human parvovirus 4, PARV4, viruses, human partetravirus, genotype 3, children, blood, plasma, whole blood, viremia, Africa.

Previous Document:  Surgical Resection of Cavernous Malformations of the Brainstem: Evolution of a Minimally Invasive Te...
Next Document:  Intravascular stent implantation for the management of pulmonary artery stenosis.