Document Detail

Hormonal, follicular and endometrial dynamics in letrozole-treated versus natural cycles in patients undergoing controlled ovarian stimulation.
Jump to Full Text
MedLine Citation:
PMID:  21693028     Owner:  NLM     Status:  MEDLINE    
The objective of this study was to compare letrozole-stimulated cycles to natural cycles in 208 patients undergoing intrauterine insemination (IUI) between July of 2004 and January of 2007. Group I (n = 47) received cycle monitoring only (natural group), Group II (n = 125) received letrozole 2.5 mg/day on cycle days three to seven, and Group III (n = 36) received letrozole 5 mg/day on cycle days three to seven. There were no differences between the groups in endometrial thickness or P₄ on the day of hCG. Estradiol levels had higher variation in the second half of the follicular phase in both letrozole-treated groups compared to the control group. Estradiol per preovulatory follicle was similar in both letrozole cycles to that observed in the natural cycles. LH was lower on the day of hCG administration in the letrozole 2.5 mg/day group vs. the natural group. In summary, letrozole results in some minor changes in follicular, hormonal and endometrial dynamics compared to natural cycles. Increased folliculogenesis and pregnancy rates were observed in the letrozole-treated groups compared to the natural group. These findings need to be confirmed in larger, prospective studies.
Mohamed A Bedaiwy; Mahmoud A Abdelaleem; Mostafa Hussein; Noha Mousa; Lisa N Brunengraber; Robert F Casper
Related Documents :
19927108 - Dynamics of improvement following total lumbar disc replacement: is the outcome predict...
1533328 - Reproducibility of trunk isoinertial dynamic performance in patients with low back pain.
12944158 - Reduced pain after surgery for cervical disc protrusion/stenosis: a 2 year clinical fol...
12182438 - Spinal epidural abscesses: clinical manifestations, prognostic factors, and outcomes.
19943988 - Comparison of radiofrequency and monopolar electrocautery tonsillectomy.
10174298 - Cyclosporin and plasmapheresis in treatment of progressive systemic lupus erythematosus...
Publication Detail:
Type:  Comparative Study; Evaluation Studies; Journal Article     Date:  2011-06-21
Journal Detail:
Title:  Reproductive biology and endocrinology : RB&E     Volume:  9     ISSN:  1477-7827     ISO Abbreviation:  Reprod. Biol. Endocrinol.     Publication Date:  2011  
Date Detail:
Created Date:  2011-07-08     Completed Date:  2011-10-10     Revised Date:  2013-06-28    
Medline Journal Info:
Nlm Unique ID:  101153627     Medline TA:  Reprod Biol Endocrinol     Country:  England    
Other Details:
Languages:  eng     Pagination:  83     Citation Subset:  IM    
Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Aromatase Inhibitors / therapeutic use
Endometrium / drug effects*,  physiology
Fertilization in Vitro
Hormones / blood*,  metabolism
Menstrual Cycle / physiology*
Nitriles / therapeutic use*
Ovarian Follicle / drug effects*,  metabolism,  physiology
Ovulation Induction / methods*
Pregnancy Rate
Retrospective Studies
Triazoles / therapeutic use*
Reg. No./Substance:
0/Aromatase Inhibitors; 0/Hormones; 0/Nitriles; 0/Triazoles; 112809-51-5/letrozole

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Reprod Biol Endocrinol
ISSN: 1477-7827
Publisher: BioMed Central
Article Information
Download PDF
Copyright ©2011 Bedaiwy et al; licensee BioMed Central Ltd.
Received Day: 19 Month: 8 Year: 2010
Accepted Day: 21 Month: 6 Year: 2011
collection publication date: Year: 2011
Electronic publication date: Day: 21 Month: 6 Year: 2011
Volume: 9First Page: 83 Last Page: 83
ID: 3131247
Publisher Id: 1477-7827-9-83
PubMed Id: 21693028
DOI: 10.1186/1477-7827-9-83

Hormonal, follicular and endometrial dynamics in letrozole-treated versus natural cycles in patients undergoing controlled ovarian stimulation
Mohamed A Bedaiwy12 Email:
Mahmoud A Abdelaleem2 Email:
Mostafa Hussein2 Email:
Noha Mousa3 Email:
Lisa N Brunengraber1 Email:
Robert F Casper3 Email:
1Department of Obstetrics and Gynecology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
2Assiut University, Assiut, Egypt
3Reproductive Sciences Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada


For over 40 years, the first-line therapy for ovulation induction (OI) has been clomiphene citrate (CC) [1]. Its inherent properties such as low price, oral route of administration and high ovulation success rate (60-90%) make it an attractive therapy. However, the pregnancy rate is [2] disappointing. Sub-optimal pregnancy rates with CC have been attributed to peripheral anti-estrogenic effects, mainly on the endometrium and the cervical mucus[3] Gonadotropins are more effective in ovulation induction and are associated with higher pregnancy rates than CC, but are expensive and carry higher risk for ovarian hyperstimulation syndrome and multiple gestations [4].

Newer options for ovulation induction are the third-generation aromatase inhibitors (AIs), the most commonly used being letrozole. Initially introduced to treat postmenopausal breast cancer, AIs are now also being used for ovulation induction or enhancement. A recent meta-analysis addressing the use of letrozole in assisted conception concluded that letrozole is as effective as other methods of ovulation induction [5]. When letrozole is used in combination with gonadotropins, it leads to lower gonadotropin requirements and pregnancy rates similar to gonadotropin treatment alone [6]. In a study comparing combined therapy of letrozole (2.5 mg/day or 5.0 mg/day) and recombinant FSH with recombinant FSH alone in an intrauterine insemination (IUI) program, 5 mg/day of letrozole was more cost-effective than the 2.5 mg/day in co-treatment with no adverse effect on pregnancy rate or outcome [7].

Aromatase inhibitors for ovulation induction are orally administered, and are relatively inexpensive with minor side effects such as very infrequent headaches and leg cramps[8]. Aromatase inhibitors increase endogenous FSH production in response to decreased estrogen biosynthesis in the ovary and extraovarian tissues, including the brain [9]. Because they do not deplete estrogen receptors like CC, normal central feedback mechanisms remain intact[10]. As the dominant follicle grows and estrogen levels rise, normal negative feedback occurs centrally resulting in suppression of FSH and atresia of the smaller growing follicles. Therefore, a single dominant follicle, and mono-ovulation, is the rule in most cases[11] with the clear advantage of reducing multiple-gestation pregnancies.

Compared to CC, letrozole has been associated with lower preovulatory estradiol (E2) levels [12], as well as thicker endometrium and a trend towards higher pregnancy rates[13]. Standard ovarian stimulation protocols often produce high preovulatory E2 levels that could adversely affect the development of the endometrium, the follicles, and the embryo. Therefore, the lower E2 when using AIs may lead to an improvement of implantation [14,15].

There have been several studies comparing letrozole to CC. However, there is a paucity of research comparing letrozole with natural cycles. Larger studies comparing CC, letrozole, and natural cycles in a single study are necessary to further characterize the effect of letrozole on hormonal dynamics and pregnancy rates. Our hypothesis is that letrozole-treated cycles mimic natural cycles in hormonal and endometrial parameters. The aim of this study was to compare cycle dynamics in letrozole-treated versus natural cycles in infertile patients undergoing intrauterine insemination (IUI).

Patient recruitment and counseling

We conducted a retrospective cohort study of 208 consecutive infertile patients who were recruited to participate. Briefly, patients underwent IUI between July of 2004 and January of 2007 at the Toronto Center For Assisted Reproductive Technology, Toronto, Canada. Patients were divided into three groups. The first group (n = 47) received cycle monitoring only (natural cycle; group I). The 2 remaining groups received letrozole on cycle days three to seven at either 2.5 mg/day (n = 125) (group II) or 5 mg/day (n = 36) (group III). An informed consent was obtained from all participants clearly denoting the off-label use of the medication prior to treatment. Subsequently IRB approval was obtained to use their data for the purposes of this study.

Causative factors of infertility were investigated and defined as follows. Tubal patency was confirmed by sonohysterography with contrast, hysterosalpingography, and or pelvic laparoscopy. Mild male factor infertility was diagnosed according to the World Health Organization (WHO) criteria for normal semen[16]. Endometriosis was diagnosed by pelvic laparoscopy. Unexplained infertility was based on the exclusion of known factors of infertility.

Cycle monitoring and insemination

All patients were followed with serial measurements of serum estradiol (E2), progesterone (P4), and luteinizing hormone (LH) using a radioimmunoassay (RIA) kit. Transvaginal ultrasonography (TVS) was performed for follicular diameter tracking and measurement of endometrial thickness. We measured follicular diameter in 2 perpendicular planes and calculated the mean, while endometrial thickness was measured in the sagittal plane at the widest part of endometrial cavity. Serum samples were obtained and TVS performed on cycle days three, seven, once between days 9 and 11, the day of human chorionic gonadotropin (hCG) administration, and when a follicle achieved a diameter of ≥16 mm. Serum follicle stimulating hormone (FSH) was measured on day 3 only. The results for E2 and P4 levels were reported as picomoles per liter and nanomoles per liter, respectively, and LH and FSH levels were reported in international units per liter.

An LH surge was defined as an increase in LH level greater than 100% over the mean of the preceding 2 measures. IUI was performed 36-40 hours after hCG administration if no endogenous LH surge occurred. If an endogenous LH surge was detected on the day of hCG administration, two IUIs were performed at 24 and 48 h. Pregnancy was diagnosed by quantitative β-hCG assay two weeks after the insemination. Clinical pregnancy was confirmed by observing fetal cardiac pulsation four weeks after positive pregnancy test by TVS.

Outcome parameters

Hormonal outcome measures were E2, P4, LH and FSH. Non-hormonal outcomes were number and size of growing follicles, endometrial thickness, and pregnancy. All three treatment groups were compared to each other for hormonal, endometrial and follicular dynamics, while the two groups receiving letrozole were combined for comparison against the natural cycle group for pregnancy rates.

Statistical analysis

Data management was done using a preprepared Excel data spreadsheet. Outcome measures are expressed as mean ± standard deviation from the mean (SD). Statistical significance for continuous variables was calculated using ANOVA test. Categorical variables were compared using the χ2 and Fisher's Exact Test. P < 0.05 was considered statistically significant. Statistical analysis was performed with SPSS (Release 14.01, SPSS Inc., Chicago, IL).


The study included 208 patients who underwent a total of 300 consecutive IUI cycles. There were 71 cycles in the natural cycle group, 179 cycles in the letrozole 2.5 mg/day group, and 50 cycles in the letrozole 5 mg/day group (table 1). Male factor and unexplained infertility were the most common indications for IUI. Other identified causes of infertility included endometriosis, and polycystic ovarian syndrome. The most frequent cause of cycle cancellation differed among the patient groups. The most common cause of cancellation in the natural cycle group was anovulation, while in the letrozole 2.5 mg/day group, the main cause was presence of ovarian cysts on cycle day 3 before the start of stimulation. The most common cause of cancellation in the letrozole 5 mg/day group was an elevated serum FSH on cycle day 3 before the start of stimulation.

Hormonal dynamics

Values for E2, P4 and LH are shown in table 2. The letrozole 5 mg/day group had significantly lower E2 on day seven, but significantly higher E2 on the day of hCG administration when compared to the natural group (P = 0.025 and 0.041, respectively). However, the E2 per preovulatory follicle was similar in all three groups on the day of hCG. On days 9 to 11 and the day of hCG administration, E2 had a larger variability, as evidenced by larger standard deviations, in the letrozole groups compared to the natural group (Table 2). LH was significantly lower on the day of hCG administration in the letrozole 2.5 mg/day group compared to the natural group (p = 0.000). P4 showed no differences between any treatment groups.

Follicular dynamics

There were no statistically significant differences in follicular diameter between the three groups until cycle day seven (table 3).Compared to the natural group, both the letrozole 2.5 mg/day and 5 mg/day groups had significantly more follicles ≥ 10 mm on day 7 (p = 0.0001 and 0.0001, respectively), more follicles ≥ 12 mm on days 9-11 (p = 0.0001 and 0.005), and more follicles ≥ 15 mm on the day of hCG administration (p = 0.0001 and 0.0001).

Endometrial dynamics

When comparing endometrial thickness, neither letrozole group differed significantly from the natural group on any day (table 4).

Pregnancy rate

Three out of 63 natural cycles (4.8%) and 22 out of 185 letrozole cycles (12%) resulted in pregnancy (table 5). This difference was statistically significant (p = = 0.02). Although only a small number of cycles were repeated as part of this study, the cumulative pregnancy rate was 13.7% in the letrozole groups, significantly higher than the natural group rate of 6.4% (p = 0.01). There were 3 twin pregnancies in the 2 letrozole groups and none in the natural cycle group.


Endometrial sparing, increased folliculogenesis, and an increase in pregnancy rate were observed in our letrozole-treated patients as compared to naturally-cycling patients. The endometrial-sparing effect of letrozole is well-demonstrated in this study by the lack of significant difference in endometrial thickness compared to the natural cycle group, and also has been confirmed by previous studies [17,18]. In addition, our ovulation monitoring findings agree with a previous study showing multifollicular development and better pregnancy outcomes with the use of letrozole 5 mg/day [14,17]. Our finding that serial serum progesterone levels were comparable between the three groups agrees with a previous study [18], and suggests that letrozole does not have a premature luteinizing effect on the developing follicle. Table 6 summarizes the results of some trials using letrozole as an ovulation inducing agent in different clinical scenaria with different results and conclusions.

Although basal LH levels were comparable among the 3 groups, there was a trend towards higher LH (although non-significant) on day 7 in the letrozole groups. This rise might be due to the release of the anterior pituitary from the negative feedback of E2. Three important observations deserve mentioning. First, the increase in LH is still well-below the levels for definition of premature LH surge. Second, after discontinuation of letrozole (days 9-11), serum LH returned to levels similar to the non-stimulated group reflecting the short half life of the letrozole. Thirdly, a natural LH surge was observed more frequently in non-stimulated cycles than in the letrozole stimulated cycles. This finding is likely artifactual since we suggest hCG administration to all women undergoing IUI so that timing of insemination can be optimized. The women undergoing natural cycle monitoring usually requested everything to be natural including no hCG trigger so the difference between the groups is unlikely to be related to the letrozole. Spontaneous LH surges do occur with letrozole for ovulation induction.

This study has some limitations, the most important of which include that it is retrospective, non-powered, non-randomized and not blinded. These issues are inherent in retrospective studies. However, we believe the results are of interest since there are few studies comparing natural cycles to letrozole-stimulated cycles. The main distinguishing features of letrozole as an ovulation inducing agent is its endometrial sparing effect and the early cycle multi-follicular development that may have translated into a better pregnancy rate in the present study. In addition, a recent study demonstrated that letrozole improves blood flow compared to CC and this observation may also be associated with improved pregnancy rates [19]. A well-designed and powered randomized clinical trial will be needed to confirm this result.

The authors declare that they have no competing interests.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MAB collected and analyzed the data and drafted the manuscript. MAA Collected the data and drafting the manuscript. MH participated in the data collection. NM participated in the design of the study and performed the statistical analysis. LNB: participated in the data collection and helped to draft the manuscript. RC Conceived the idea of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Casper RF,Aromatase inhibitors in ovarian stimulationJ Steroid Biochem Mol BiolYear: 2007106717510.1016/j.jsbmb.2007.05.02517604615
Neveu NGL,St.-Michel P,Lavoie HB,Comparison of clomiphene citrate, metformin, or the combination of both for first-line ovulation induction and achievement of pregnancy in 154 women with polycystic ovary syndromeFertil SterilYear: 20078711312010.1016/j.fertnstert.2006.05.06917081535
Gorlitsky GAKN,Speroff L,Ovulation and pregnancy rates with clomiphene citrateObstet GynecolYear: 19785126526910.1097/00006250-197803000-00002628527
Guzick DSCS,Coutifaris C,Overstreet JW,Factor-Litvak P,Steinkampf MP,Hill JA,Mastroianni L,Buster JE,Nakajima ST,Vogel DL,Canfield RE,Efficacy of superovulation and intrauterine insemination in the treatment of infertility. National Cooperative Reproductive Medicine NetworkN Engl J MedYear: 199934017718310.1056/NEJM1999012134003029895397
Requena A,Herrero J,Landeras J,Navarro E,Neyro JL,Salvador C,Tur R,Callejo J,Checa MA,Farre M,Espinós JJ,Fábregues F,Graña-Barcia M,Use of letrozole in assisted reproduction: a systematic review and meta-analysisHum Reprod UpdateYear: 20081457158210.1093/humupd/dmn03318812422
Holzer H,Casper R,Tulandi T,A new era in ovulation inductionFertil SterilYear: 20068527728410.1016/j.fertnstert.2005.05.07816595197
Noriega-Portella L,Noriega-Hoces L,Delgado A,Rubio J,Gonzales-Castaneda C,Gonzales GF,Effect of letrozole at 2.5 mg or 5.0 mg/day on ovarian stimulation with gonadotropins in women undergoing intrauterine inseminationFertil SterilYear: 2008901818182510.1016/j.fertnstert.2007.08.06018083169
Hamilton A,Piccart M,The third-generation non-steroidal aromatase inhibitors: a review of their clinical benefits in the second-line hormonal treatment of advanced breast cancerAnn OncolYear: 19991037738410.1023/A:100836830082710370778
Naftolin,Brain aromatization of androgensJ Reprod MedYear: 1994392572618040841
Robert F,Casper MFMM,Aromatase Inhibitors for Ovulation InductionJ Clin Endocrinol MetabYear: 20069176077116384846
Casper RF,Letrozole versus clomiphene citrate: which is better for ovulation induction?Fertil SterilYear: 200992858910.1016/j.fertnstert.2007.03.09417588568
Bayar U,Basaran M,Kiran S,Coskun A,Gezer S,Use of an aromatase inhibitor in patients with polycystic ovary syndrome: a prospective randomized trialFertil SterilYear: 2006861447145110.1016/j.fertnstert.2006.04.02617070196
Serdar B,Ovulation induction in women with infertility: a new indication for aromatase inhibitorsFertil SterilYear: 2003806133810.1016/j.fertnstert.2003.06.00114667864
Simón CCF,Valbuena D,Remohí J,Pellicer A,Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patientsHum ReprodYear: 199510243224378530680
Simon C,Cano F,Valbuena D,Remohi J,Pellicer A,Clinical evidence for a detrimental effect on uterine receptivity of high serum oestradiol concentrations in high and normal responder patientsHum ReprodYear: 199510243224378530680
Organization WHWHO laboratory manual for the examination of human semen and sperm-cervical mucus interactionYear: 19994Cambridge: Cambridge University Press
Bedaiwy MA,Mousa NA,Casper RF,Aromatase inhibitors prevent the estrogen rise associated with the flare effect of gonadotropins in patients treated with GnRH agonistsFertil SterilYear: 2009911574157710.1016/j.fertnstert.2008.09.07718973892
Bedaiwy MA,Shokry M,Mousa N,Claessens A,Esfandiari N,Gotleib L,Casper R,Letrozole co-treatment in infertile women 40 years old and older receiving controlled ovarian stimulation and intrauterine inseminationFertil SterilYear: 2009912501250710.1016/j.fertnstert.2008.03.02018501899
Baruah J,Roy KK,Rahman SM,Kumar S,Sharma JB,Karmakar D,Endometrial effects of letrozole and clomiphene citrate in women with polycystic ovary syndrome using spiral artery DopplerArch Gynecol ObstetYear: 200927931131410.1007/s00404-008-0714-418597100
Al-Fozan H,Al-Khadouri M,Tan SL,Tulandi T,A randomized trial of letrozole versus clomiphene citrate in women undergoing superovulationFertil SterilYear: 2004821561156310.1016/j.fertnstert.2004.04.07015589860
Barroso G,Menocal G,Felix H,Rojas-Ruiz JC,Arslan M,Oehninger S,Comparison of the efficacy of the aromatase inhibitor letrozole and clomiphene citrate as adjuvants to recombinant follicle-stimulating hormone in controlled ovarian hyperstimulation: a prospective, randomized, blinded clinical trialFertil SterilYear: 2006861428143110.1016/j.fertnstert.2006.03.04416978619
Bayar U,Tanriverdi HA,Barut A,Ayoglu F,Ozcan O,Kaya E,Letrozole vs. clomiphene citrate in patients with ovulatory infertilityFertil SterilYear: 2006851045104810.1016/j.fertnstert.2005.09.04516580393
Atay V,Cam C,Muhcu M,Cam M,Karateke A,Comparison of letrozole and clomiphene citrate in women with polycystic ovaries undergoing ovarian stimulationJ Int Med ResYear: 200634737616604826
Badawy A,Abdel Aal I,Abulatta M,Clomiphene citrate or letrozole for ovulation induction in women with polycystic ovarian syndrome: a prospective randomized trialFertil SterilYear: 2009928495210.1016/j.fertnstert.2007.02.06217582406
Badawy A,Shokeir T,Allam AF,Abdelhady H,Pregnancy outcome after ovulation induction with aromatase inhibitors or clomiphene citrate in unexplained infertilityActa Obstet Gynecol ScandYear: 20098818719110.1080/0001634080263819919089782
Badawy A,Elnashar A,Totongy M,Clomiphene citrate or aromatase inhibitors for superovulation in women with unexplained infertility undergoing intrauterine insemination: a prospective randomized trialFertil SterilYear: 2009921355135910.1016/j.fertnstert.2008.06.01318692823
Sh Tehrani Nejad E,Abediasl Z,Rashidi BH,Azimi Nekoo E,Shariat M,Amirchaghmaghi E,Comparison of the efficacy of the aromatase inhibitor letrozole and clomiphen citrate gonadotropins in controlled ovarian hyperstimulation: a prospective, simply randomized, clinical trialJ Assist Reprod GenetYear: 20082518719010.1007/s10815-008-9209-218427974
Topipat C,Choktanasiri W,Jultanmas R,Weerakiet S,Wongkularb A,Rojanasakul A,A comparison of the effects of clomiphene citrate and the aromatase inhibitor letrozole on superovulation in Asian women with normal ovulatory cyclesGynecol EndocrinolYear: 20082414515010.1080/0951359080189560918335329
Begum MR,Ferdous J,Begum A,Quadir E,Comparison of efficacy of aromatase inhibitor and clomiphene citrate in induction of ovulation in polycystic ovarian syndromeFertil SterilYear: 200992853710.1016/j.fertnstert.2007.08.04418177867

[TableWrap ID: T1] Table 1 

Study demographics

Group I (Natural cycle) Group II (letrozole 2.5 mg) Group III (letrozole 5 mg) P value
Total No of patients 47 125 36
Age (Mean ± SD) 34.8 ± 5.03 33.5 ± 4.02 33.88 ± 3.45 NS
Day 3 FSH (IU/L) 6.01 ± 1.71 6.47 ± 2.16 7.49 ± 3.76 I Vs II: 0.233
I Vs III: 0.033
Total No of cycles started 71 179 50
Completed cycle: No, [%] 63 [88.7] 142 [79.3] 43 [86]
Total number of cycles cancelled: No, [%] 8 [11.3] 37 [20.7] 7 [14] 0,06
No of monitoring visits (Mean ±SD) 2.08 ± 1.02 2.3 ± 1.12 2.68 ± 1.11 I Vs II: 0.232
I Vs III: 0.003
Causes of cycle cancelling
 Poor responder: No, [%] 5 [62.5] 9 [24.3] 0 [0] NS
 Ovarian cyst: No, [%] 0 [0] 16 [43.2] 2 [28.6] NS
 Patient request: No, [%] 1 [12.5] 8 [21.6] 0 [0] NS
 Elevated FSH: No, [%] 0 [0] 2 [5.4] 3 [42.9] NS
 Others: No, [%] 2 [25] 2 [5.4] 2 [28.6] NS
Indication for IUI
 Male factor infertility: No, [%] 38/71 [53.5] 55/179 [30.7] 19/50 [38] NS
 Unexplained infertility: No, [%] 33/71 [46.5] 106/179 [59.3] 30/50 [60] NS
 Endometriosis: No, [%] 0 [0] 9/179 [5] 0 [0] NS
 Others No, [%] 1/71 [1.4] 9/179 [5] 1 [2] NS

[TableWrap ID: T2] Table 2 

Hormonal dynamics: follicular phase levels of serum estradiol, progesterone, and LH

Estradiol (pmol/mL) Progesterone (pmol/mL) LH (IU/L)
Group I (Natural cycle) Group II letrozole 2.5 mg Group III (letrozole 5 mg) Group I (Natural cycle) Group II (letrozole 2.5 mg Group III (letrozole 5 mg) Group I (Natural cycle) Group II (letrozole 2.5 mg Group III (letrozole 5 mg)
D3 139.8 ± 66.36 154.22 ± 131.31 126.71 ± 46.75 2.35 ± 0.84 2.57 ±.90 2.55 ±.89 5.18 ± 2.25 5.22 ± 3.41 5.28 ± 2.71
D7 257.75 ± 187.8 196.60 ± 127.07 147.63 ± 69.74 2.08 ± 0.40 2.37 ± 0.87 2.80 ± 0.82 5.1 ± 1.34 6.71 ± 4.23 8.28 ± 4.07
D 9-11 380.48 ± 238.78 810.05 ± 178.26 562.53 ± 137.51 2.35 ± 0.85 2.2 ± 0.79 2.67 ± 0.47 5.89 ± 2.96 5.76 ± 3.30 6.65 ± 2.95
D hCG 911.48 ± 941.96 1275.41 ± 927.66 1066.16 ± 1876.37 2.46 ± 1.32 2.40 ± 0.89 2.75 ± 0.75 17.39 ± 16.09 8.92 ± 9.86 10.50 ± 13.81
E2/follicle ≥ 16 mm 593.12 ± 577.4 584.41 ± 1147.84 389.8 ± 849.79

P value: 0.025: day7 for serum Estradiol between group I and III.

P value: 0.041 day of hCG For serum Estradiol between group I and III.

P value: 0.000 LH at day of HCG group I vs II

[TableWrap ID: T3] Table 3 

Follicular dynamics in study groups

Group I Group II Group III P value
Day 3 diameter of follicles in cm 0.56 ± 1.02 0.79 ± 1.12 0.53 ± 0.86 I vs III: 0.9
I vsII: 0.26
Number of D 7-8 follicles ≥ 10 mm 0.80 ± 0.63 2.52 ± 1.37 2.23 ± 1.48 I vs III: 0.000
I vsII: 0.000
Number of D 9-11follicles more than 12 mm 1.13 ± 0.73 2.09 ± 1.00 2.29 ± 1.35 I vs III: 0.005
I vsII: 0.000
Number of mature follicles (≥15 mm) at the Day of hCG 1.20 ± 0.48 1.84 ± 0.92 2.12 ± 0.99 I vs III: 0.000
I vsII: 0.000

[TableWrap ID: T4] Table 4 

Endometrial thickness (cm) in study groups

Group I Group II Group III
Cycle day 3 0.14 ± 0.26 0.10 ± 0.23 0.15 ± 0.24
Cycle day 7 0.55 ± 0.26 0.56 ± 0.19 0.50 ± 0.19
Cycle day 9-11 0.65 ± 0.18 0.77 ± 0.96 0.62 ± 0.16
Day of hCG injection 0.86 ± 0.16 0.82 ± 0.14 0.86 ± 0.23

P value non-significant when comparing group I to either group II or III.

[TableWrap ID: T5] Table 5 

Pregnancy rate in study groups

Group I Number (%) Combined groups II, III Number (%) P value
Pregnancy rate/cycle started 3/71 (4.2) 22/229 (9.61) 0.02
Pregnancy rate/cycle completed 3/63 (4.8) 22/185 (11.89) 0.02
Cumulative pregnancy rate 3/47 (6.4) 22/161 (13.7) 0.01
Twin pregnancy 0/3 (0) 3/22 (13.6) 0.01
Miscarriage (No) 0/3 (0) 3/22 (13.6) 0.01

[TableWrap ID: T6] Table 6 

Summary of randomized trials assessing the efficacy of letrozole

(reference number)
Intervention Cohort of patients Conclusion
[20] Letrozole (2.5 mg) Vs CC Infertile women undergoing Superovulation and IUI. Similar endometrial thickness and pregnancy rates.
[21] letrozole Vs CC as adjuvants to rFSH 41 patients Superovulation before IUI in unexplained infertility Better endometrial thickness with letrozole. Similar pregnancy rate
[22] Letrozole Vs CC 74 patients Polycystic ovary syndrome Similar endometrial thickness and pregnancy rate
[23] Letrozole (2.5 mg) Vs CC Polycystic ovary syndrome Better endometrial thickness and pregnancy rate with letrozole.
[24] Letrozole Vs CC Polycystic ovary syndrome No advantage to the use of letrozole over CC as a first-line treatment for induction of ovulation in women with PCOS
[25,26] Letrozole Vs CC Superovulation before IUI in unexplained infertility No superiority between letrozole and CC for inducing ovulation in women with unexplained infertility before IUI.
[27] Letrozole Vs CC-gonadotropin Superovulation before IUI in unexplained infertility Letrozole is a good alternative to CC-gonadotropin.
[28] Letrozole (2.5 mg) Vs CC 22 patients superovulation in women with normal ovulation CC is superior to 2.5 mg letrozole for superovulation induction in women with normal ovulation.
[29] Letrozole (7.5 mg) Vs CC 46 patients Polycystic ovary syndrome Letrozole has better ovulation and PR in comparison to CC in patients with PCOS

Article Categories:
  • Research

Previous Document:  Prevention of: self harm in British South Asian women: study protocol of an exploratory RCT of cultu...
Next Document:  One stop crisis centres: A policy analysis of the Malaysian response to intimate partner violence.