Document Detail

Higher urine 1-hydroxy pyrene glucuronide (1-OHPG) is associated with tobacco smoke exposure and drinking maté in healthy subjects from Rio Grande do Sul, Brazil.
Jump to Full Text
MedLine Citation:
PMID:  16729889     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: The highest rates of esophageal squamous cell carcinoma (ESCC) in Brazil occur in Rio Grande do Sul, the most southern state, which has incidence rates of 20.4/100,000/year for men and 6.5/100,000/year for women. Exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) through tobacco smoke and other sources may increase the risk of ESCC. The aims of the current study were to investigate the degree and sources of PAH exposure of the inhabitants of this region of southern Brazil. METHODS: Two hundred healthy adults (half smokers, half non smokers, half male and half female) were recruited, given a standardized questionnaire, and asked to provide a urine sample for measurement of 1-hydroxypyrene glucuronide (1-OHPG), a PAH metabolite). Urine 1-OHPG concentrations were measured using immunoaffinity chromatography and synchronous fluorescence spectroscopy and urine cotinine was measured using a dipstick test. We examined factors associated with 1-OHPG concentration using Wilcoxon tests and multiple linear regression. RESULTS: Urine 1-hydroxypyrene glucuronide (1-OHPG) was successfully measured on 199 subjects. The median (interquartile range) of urine 1-OHPG in the 199 participants was 2.09 pmol/mL (0.51, 5.84). Tobacco smoke exposure and maté drinking were statistically significantly associated with higher urine 1-OHPG concentrations in the multivariate linear regression model. CONCLUSION: Tobacco smoke and maté both contribute to high levels of benzo[a]pyrene exposure in the people of southern Brazil. This high PAH exposure may contribute to the high rates of ESCC observed in this population. The increased urine 1-OHPG concentrations associated with maté suggest that contaminants, not just thermal injury, may help explain the increased risk of ESCC previously reported for maté consumption.
Authors:
Renato B Fagundes; Christian C Abnet; Paul T Strickland; Farin Kamangar; Mark J Roth; Philip R Taylor; Sanford M Dawsey
Related Documents :
17654829 - The influence of cigarette smoking on various aspects of periodontal health.
8558049 - Passive smoking.
12721139 - Slowing the epidemic of tobacco use among asian americans and pacific islanders.
21434759 - Social and behavioural determinants of alcohol consumption.
16618779 - Duration but not intensity of alcohol and tobacco exposure predicts p16ink4a homozygous...
17673099 - Adolescent receptivity to tobacco marketing by racial/ethnic groups in california.
15675209 - Challenges that opioid-dependent women present to the obstetric anaesthetist.
1345159 - Prevention of cardiovascular disease.
8521709 - Enlarged follicles in women using oral contraceptives.
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural     Date:  2006-05-26
Journal Detail:
Title:  BMC cancer     Volume:  6     ISSN:  1471-2407     ISO Abbreviation:  BMC Cancer     Publication Date:  2006  
Date Detail:
Created Date:  2006-08-11     Completed Date:  2006-09-25     Revised Date:  2009-11-18    
Medline Journal Info:
Nlm Unique ID:  100967800     Medline TA:  BMC Cancer     Country:  England    
Other Details:
Languages:  eng     Pagination:  139     Citation Subset:  IM    
Affiliation:
Universidade Federal de Santa Maria, Departamento de Clínica Médica, Centro de CIências da Saúde, Santa Maria, RS, Brazil. rfagundes@pro.viars.com.br
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Alcohol Drinking / epidemiology
Benzo(a)pyrene / adverse effects,  pharmacokinetics*
Beverages / adverse effects*
Biological Markers
Biotransformation
Brazil / epidemiology
Carcinogens, Environmental / adverse effects,  pharmacokinetics*
Cocarcinogenesis
Cookery / methods,  statistics & numerical data*
Cotinine / urine
Environmental Exposure
Esophageal Neoplasms / epidemiology
Glucuronates / urine*
Hot Temperature / adverse effects
Ilex paraguariensis / adverse effects*
Incidence
Meat
Polycyclic Hydrocarbons, Aromatic / adverse effects,  pharmacokinetics*
Pyrenes
Questionnaires
Smoke / adverse effects*
Smoking / adverse effects*
Tobacco Smoke Pollution / adverse effects*
Grant Support
ID/Acronym/Agency:
P01-ES06052/ES/NIEHS NIH HHS
Chemical
Reg. No./Substance:
0/1-hydroxypyrene-glucuronide; 0/Biological Markers; 0/Carcinogens, Environmental; 0/Glucuronates; 0/Polycyclic Hydrocarbons, Aromatic; 0/Pyrenes; 0/Smoke; 0/Tobacco Smoke Pollution; 486-56-6/Cotinine; 50-32-8/Benzo(a)pyrene
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): BMC Cancer
ISSN: 1471-2407
Publisher: BioMed Central, London
Article Information
Download PDF
Copyright ? 2006 Fagundes et al; licensee BioMed Central Ltd.
open-access: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Received Day: 19 Month: 11 Year: 2005
Accepted Day: 26 Month: 5 Year: 2006
collection publication date: Year: 2006
Electronic publication date: Day: 26 Month: 5 Year: 2006
Volume: 6First Page: 139 Last Page: 139
ID: 1539013
Publisher Id: 1471-2407-6-139
PubMed Id: 16729889
DOI: 10.1186/1471-2407-6-139

Higher urine 1-hydroxy pyrene glucuronide (1-OHPG) is associated with tobacco smoke exposure and drinking mat? in healthy subjects from Rio Grande do Sul, Brazil
Renato B Fagundes12 Email: rfagundes@pro.viars.com.br
Christian C Abnet3 Email: abnetc@mail.nih.gov
Paul T Strickland4 Email: pstrickl@jhsph.edu
Farin Kamangar3 Email: kamangaf@mail.nih.gov
Mark J Roth3 Email: rothm@mail.nih.gov
Philip R Taylor5 Email: taylorp@dcpcepn.nci.nih.gov
Sanford M Dawsey3 Email: dawseys@dcpcepn.nci.nih.gov
1Universidade Federal de Santa Maria, Departamento de Cl?nica M?dica, Centro de CI?ncias da Sa?de, Santa Maria, RS, Brazil
2Universidade Federal do Rio Grande do Sul, Gastroenterology Post Graduate Course. Porto Alegre, RS, Brazil
3Nutritional Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
4Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
5Genetic Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA

Background

Esophageal cancer is a common and usually fatal cancer that is characterized by great variation in rates among different populations. In South America, there is a geographic area of high esophageal squamous cell carcinoma (ESCC) incidence that encompasses southern Brazil, northeastern Argentina, Uruguay, and Paraguay, with age-standardized incident rates of approximately 20/100,000/year [1]. Inhabitants of this area share a similar environment and similar habits and culture. Two habits they have in common that may contribute to the high ESCC rates are the high consumption of grilled red meat called churrasco and a daily consumption of large volumes of a beverage known as mat?. Churrasco is barbequed meat grilled directly over a wood fire and is a potential source of polycyclic aromatic hydrocarbons (PAH), heterocyclic amines, and other contaminants which may be associated with cancer in humans [2,3]. Mate is an infusion of the herb Ilex paraguayensis that is prepared in a gourd and is often drunk very hot through a metal straw, which delivers the liquid directly to the oropharynx and esophagus. Most epidemiologic studies that examined mat? drinking have found significant associations with ESCC [4-10], but one reported no association [11].

In low-risk areas, most ESCC is attributable to alcohol, tobacco, and poor diet [12], but the etiologic agents in high-risk populations remain unclear. PAHs, such as benzo[a]pyrene, and nitrosamines from tobacco smoke and from other sources may act as esophageal carcinogens [2,13-17]. Animal studies have demonstrated a dose-response relationship between benzo[a]pyrene food levels and the incidence of esophageal cancer in mice [18].

Studies in the very high risk population of Linxian, China, where consumption of tobacco and alcohol is low, suggest that the inhabitants there may be exposed to high-levels of carcinogenic PAHs from the coal and wood used for cooking and heating in unvented stoves [19-21]. This hypothesis is also supported by the finding of high levels of benzo[a]pyrene in uncooked food samples [15], histological changes suggestive of PAH exposure in esophagectomy specimens [14], and high 1-hydroxypyrene glucuronide (1-OHPG) concentrations in urine samples from the inhabitants of this region [16]. 1-OHPG is a stable PAH metabolite that is excreted in the urine and is an index biomarker that reflects recent exposure to mixed PAHs [22-27]. In northeastern Iran, another area with very high rates of ESCC and little consumption of tobacco and alcohol, the population also has high urine 1-OHPG concentration, consistent with exposure to very high levels of PAHs [28].

To determine the degree and source of PAH exposure in inhabitants of southern Brazil we collected questionnaire data and determined urine concentrations of 1-OHPG from inhabitants of Rio Grande do Sul, the most southern state in Brazil.


Methods
Subjects

Participants were volunteers from Santa Maria, a city in the central region of Rio Grande do Sul. People attending the outpatient unit of the University Hospital with minor injuries, minor skin diseases, to donate blood, women visiting the gynecologist for annual screening, patients with dyspepsia after a normal upper gastrointestinal endoscopy, and patient's companions were considered eligible. After a brief description of the study purpose and requirements they were invited to participate. Greater than 90% of the invited individuals chose to participate. Subjects were recruited so that among the 200 healthy people half were male and half were female and within each of these groups half were current smokers and half were non-smokers. Informed consent was obtained from each participant. The study was approved by the Ethical Committee on Research of the Health Sciences Center of the University of Santa Maria, RS, Brazil, and the analysis of anonymized data and samples was exempted from review by the Institutional Review Board of the National Cancer Institute, Bethesda, MD.

Questionnaire

All subjects were interviewed face-to-face using a pre-tested, standardized questionnaire, administered by specially trained interviewers. The questionnaire included: basic demographic variables and residence characteristics; habits of tobacco smoking (age started, age stopped, typical number of cigarettes per day, type of tobacco, and passive smoke exposure); history of alcohol drinking (type of alcoholic beverage, amount of each beverage consumed, duration of consumption); history of mat? drinking (amount usually consumed/day); frequency of and fuel used to make barbeque and other cooking; preferred doneness and amount of barbeque typically eaten; and home heating fuel system and its smokiness.

Urine measurements

Each participant was recruited in the morning asked to provide a 10 ml urine sample. The urine samples were collected in a sterile container, frozen at -80?C, and shipped on dry ice to the National Cancer Institute. Urine samples were assayed in the laboratory of Dr. Strickland at the Johns Hopkins University. Urine 1-OHPG concentrations were measured using immunoaffinity chromatography and synchronous fluorescence spectroscopy as previously described [16,25]. NicAlert Strips (Jant Pharmaceutical Corp., Encino, CA) were used to measure urine cotinine equivalents as directed by the manufacturer. This test produces categorical results ranging from zero (<1?10 ng/mL cotinine equivalents) to six (>2000 ng/mL). Because only a small number of subjects had urine cotinine results in each of categories two, three, and four, we collapsed these three groups into a single category.

Statistical analysis

Urine 1-OHPG concentrations were examined graphically and found to be skewed with a mode at the limit of detection which included 37/199 (19%) subjects. Log10 transformation produced a normal curve outside the mode. Urine 1-OHPG was also represented as quintiles for some analyses. Univariate associations with 1-OHPG were examined by forming exposure data into quantiles and comparing them with the Wilcoxon rank sum test or the Kruskal-Wallis test. Age and mat? were divided into empirical quartiles. Multivariate associations were examined using log-transformed urine concentrations in linear regression models. The final model was built by adding all variables, with selected members of a class (e.g. only one of the variables associated with barbeque preparation), and deleting those that were not significant, based on the F-test, and whose removal did not change the estimates for the remaining variables. Interactions between sex or tobacco smoking and other variables were explored. When tested independently (data not shown) we found a significant interaction between barbeque preparation and smoke exposure, so it was retained in the final model. A borderline significant interaction between smoke exposure and mat? was also retained. The p-values for the interactions were inflated slightly in the final model. To better show the effects of these interaction we plotted the data for the four groups. Data for plotting was jittered to improve clarity. All analyses were carried out using SAS version 9 (SAS Institute, Cary, NC). All p-values come from two-sided tests.


Results

We recruited a total of 200 subjects evenly divided by sex and current smoking status and each completed a questionnaire and provided a urine sample. We successfully measured urine 1-OHPG and cotinine on 199 of these subjects, so these subjects appear in the remaining analyses. The median (interquartile range) of urine 1-OHPG in the 199 participants was 2.09 pmol/mL (0.51, 5.84). Table 1 presents the distributions and univariate associations between personal characteristics and habits and the concentration of 1-OHPG. We found associations between urine 1-OHPG concentrations and age, tobacco use, urine cotinine, smoke exposure mat? consumption, and drinking cacha?a (distilled sugar cane liquor). Smoke exposure was defined as all subjects reporting current tobacco smoking or a cotinine value greater than category 1 (>30 ng/ml). Mat? consumption showed a step-wise increase between volume consumed and urine 1-OHPG concentration

We used tabular analysis to look for associations between these factors and tobacco smoking, the most likely contributor to urine 1-OHPG. We found associations between tobacco smoking and each of the factors. By increasing order of age group, we found a prevalence of smoking of 52%, 63%, 58%, and 17%, respectively, (3 df chi-square < 0.0001). Fifty-three percent of mat? consumers, but only 29% of non-consumers reported current smoking (chi-square P = 0.0031). We expected and found that most subjects with urine cotinine values of 5 or 6 reported current use of tobacco. Fifty-three percent of non-smokers had cotinine values greater than category zero, but only 1 had a value of 5 or 6. Significantly more cacha?a drinkers (71%) reported current tobacco smoking than did non-drinkers (44%) (chi-square P = 0.0042).

Table 2 presents the results from a multivariate linear regression model for the association between the examined factors and urine 1-OHPG. The final model had a total r2 of 0.21. Our multivariate model showed significant associations between urine 1-OHPG and age, smoke exposure, mat? drinking, but the univariate association with cacha?a appears to have resulted from confounding by tobacco smoke exposure. We found interactions between smoke exposure and both mat? drinking and barbeque preparation. This suggests that the difference in urine 1-OHPG associated with these factors was not the same in smoke exposed and non-smoke exposed subjects. For example, among non-smoke exposed individuals, mat? was associated with a significant increase in urine 1-OHPG. Among the smoke exposed there was no apparent increase in urine 1-OHPG. We obtained similar results with two different barbeque preparation variables, namely "Did you prepare barbeque in the last week" and "Do you prepare barbeque at least once a week."

Because of the complexity of the final model, we wished to examine the effect of mat? consumption and barbeque preparation graphically. Therefore, we divided the cohort into groups and plotted the individual urine concentrations. Figure 1 presents the data by mat? consumption and smoke exposure and Figure 2 presents the data by barbeque preparation and smoke exposure. In these figures, the effects of mat? consumption and barbeque preparation are more pronounced in non-smokers.

We wanted to assure that our results were not due to the shape of the distribution of urine 1-OHPG concentrations, so we created an alternative urine 1-OHPG scale by categorizing subjects into five quintiles where the first quintile was subjects at or near the limit of detection and the remaining subjects were assigned to the remaining values. Replacing the log-transformed urine 1-OHPG concentration value with the quintile category and fitting the same final model produced very similar results, reassuring us that the results were not sensitive to the shape of the distribution (data not shown).


Discussion

According to the Brazilian Ministry of Health, southern Brazil has incidence rates for ESCC of approximately 20.4/100,000/year for men and 6.5/100,000 for women. These rates are much higher than those observed in most western countries. Several epidemiologic studies have examined potential etiologic factors other than tobacco and alcohol in this region of South America that may contribute to the high rates of ESCC. Some evidence suggests that high consumption of churrasco and hot mat? could be additional important risk factors [4-10].

The median urine 1-OHPG level of the inhabitants of southern Brazil who were examined in this study (2.09 pmol/ml) was similar to those found in two other high ESCC-risk areas, namely Linxian, China (2.06 pmol/ml) [16] and northeastern Iran (4.2 pmol/ml)[28]. All of these concentrations are much higher than those reported for non-smoking US residents (0.23 pmol/ml)[29]. As expected, tobacco smoking in our population had a significant association with urine 1-OHPG. Non-smoke exposed subjects who regularly prepare barbeque also had elevated urine 1-OHPG concentrations, presumably from increased smoke exposure during this activity. Surprisingly, we also found that any mat? consumption significantly increased urine 1-OHPG concentrations and that there was a step-wise increase in 1-OHPG concentration with the volume of mat? consumed.

Brazil is a country with recognized regional socio-economical and cultural differences. Rio Grande do Sul State has an economy based largely on agriculture and cattle production which has led to high consumption of red meat, due to relatively low prices and the availability of this product, and a preference for barbequed meat. The churrasco maker is exposed to coal or wood smoke when preparing the meat. We did not see a significant association between urine 1-OHPG concentration and the amount of barbeque consumed, but exposure to other potentially hazardous compounds that may be present in the barbequed meat, such as heterocyclic amines, should also be investigated [30].

Several epidemiologic studies in this region of South America have shown an association between mat? consumption and risk of esophageal cancer [4-10]. Possible reasons for this association include ingestion of carcinogens present in the unprocessed leaves of Ilex paraguayensis, ingestion of carcinogens produced or added as contaminants during the processing of the leaves, and thermal injury to the esophageal mucosa caused by drinking mat? tea at very hot temperatures. Many people in this region drink large amounts of mat? at very high temperatures. In our study population, we saw a median intake (interquartile range) of 500 (100 ? 1000) mls/day. Previous studies in southern Brazil have reported mean mat? consumptions of 1200 and 1800 ml/day and mean temperatures measured just before consumption of 63.4 and 69.5?C [31,32]. Several studies have reported that only the temperature at which mat? was drunk was significantly associated with ESCC risk, while the amount of mat? consumed and the temperature at which it was extracted were inconsequential [7,11]. Other studies, however, reported that high temperature and a high volume of consumption were both important, and were independently associated with significantly increased risk of ESCC [4,8]. Yet another study reported that duration and amount of mat? consumption was consistently associated with cancer risk, but temperature was not [5]. We did not collect information on mate temperature in this study because we had no a priori reason to suspect that consumption temperature would affect urine 1-OHPG concentration. We also thought that without objective temperature measurements, questionnaire data concerning mate temperature would not be sufficiently reliable for meaningful evaluations.

In most studies from this region, mate consumption is considered to be an independent risk factor for esophageal cancer. The underlying mechanism, whether thermal or chemical, remain unclear. Fonseca et al. reported that extracts of unprocessed Ilex paraguayensis are mutagenic in bacterial assays and can cause chromosomal aberrations in human peripheral lymphocytes treated ex vivo [33]. The processing of this herb for mat? involves roasting the leaves over an open fire, which can lead to the formation or addition of PAHs or other contaminants. A single study of processed mate purchased in Germany reported that the leaves contained up to 461 ?g/kg benzo[a]pyrene, but there were relatively low concentrations of this PAH in the prepared beverage [34]. Differences in mat? brand and the details of tea preparation might change the amount of benzo[a]pyrene in the tea. The finding of benzo[a]pyrene in mat? implies, however, that elevated 1-OHPG concentrations in mat? drinkers may come directly from the mat?, and need not be attributed to uncontrolled confounders such as smoking. Our findings raise the possibility that PAH exposure from consumption of mat? may be one cause for the previously reported association between mat? drinking and ESCC risk.


Conclusion

We conclude that people in southern Brazil are exposed to high levels of PAH from tobacco smoke and mat? drinking, as well as barbeque preparation and other unmeasured sources, and that this exposure may contribute to the high rates of ESCC observed in this area. Additional studies are needed to characterize this exposure more fully and to determine if it is etiologically associated with the high esophageal cancer rates found in this area.


Competing interests

The author(s) declare that they have no competing interests.


Authors' contributions

RBF designed the questionnaires and supervised the field studies. PTS supervised urine 1-OHPG measurements. CCA and FK contributed to the statistical analysis, MJR, PRT and SMD with the other authors contribute on the interpretation of the data and preparation of the manuscripts. All authors read and approved the final manuscript.


Pre-publication history

The pre-publication history for this paper can be accessed here:


Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics and by NIH grant P01-ES06052 to Dr. Strickland.


References
Parkin DM,Pisani P,Ferlay J. Estimates of the worldwide incidence of 25 major cancers in 1990Int J Cancer 1999;80:827–841. [pmid: 10074914] [doi: 10.1002/(SICI)1097-0215(19990315)80:6<827::AID-IJC6>3.0.CO;2-P]
Nadon L,Siemiatycki J,Dewar R,Krewski D,Gerin M. Cancer risk due to occupational exposure to polycyclic aromatic hydrocarbonsAm J Ind Med 1995;28:303–324. [pmid: 7485186]
Ward MH,Sinha R,Heineman EF,Rothman N,Markin R,Weisenburger DD,Correa P,Zahm SH. Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preferenceInt J Cancer 1997;71:14–19. [pmid: 9096659] [doi: 10.1002/(SICI)1097-0215(19970328)71:1<14::AID-IJC4>3.0.CO;2-6]
Castellsague X,Munoz N,De Stefani E,Victora CG,Castelletto R,Rolon PA. Influence of mat? drinking, hot beverages and diet on esophageal cancer risk in South AmericaInt J Cancer 2000;88:658–664. [pmid: 11058886] [doi: 10.1002/1097-0215(20001115)88:4<658::AID-IJC22>3.0.CO;2-T]
De Stefani E,Munoz N,Esteve J,Vasallo A,Victora CG,Teuchmann S. Mat? drinking, alcohol, tobacco, diet, and esophageal cancer in UruguayCancer Res 1990;50:426–431. [pmid: 2295081]
De Stefani E,Deneo-Pellegrini H,Ronco AL,Boffetta P,Brennan P,Munoz N,Castellsague X,Correa P,Mendilaharsu M. Food groups and risk of squamous cell carcinoma of the oesophagus: a case-control study in UruguayBr J Cancer 2003;89:1209–1214. [pmid: 14520448] [doi: 10.1038/sj.bjc.6601239]
Rolon PA,Castellsague X,Benz M,Munoz N. Hot and cold mat? drinking and esophageal cancer in ParaguayCancer Epidemiol Biomarkers Prev 1995;4:595–605. [pmid: 8547825]
Sewram V,De Stefani E,Brennan P,Boffetta P. Mat? consumption and the risk of squamous cell esophageal cancer in UruguayCancer Epidemiol Biomarkers Prev 2003;12:508–513. [pmid: 12814995]
Vassallo A,Correa P,De SE,Cendan M,Zavala D,Chen V,Carzoglio J,eo-Pellegrini H. Esophageal cancer in Uruguay: a case-control studyJ Natl Cancer Inst 1985;75:1005–1009. [pmid: 3865007]
Victora CG,Munoz N,Day NE,Barcelos LB,Peccin DA,Braga NM. Hot beverages and oesophageal cancer in southern Brazil: a case-control studyInt J Cancer 1987;39:710–716. [pmid: 3583451]
Castelletto R,Castellsague X,Munoz N,Iscovich J,Chopita N,Jmelnitsky A. Alcohol, tobacco, diet, mat? drinking, and esophageal cancer in ArgentinaCancer Epidemiol Biomarkers Prev 1994;3:557–564. [pmid: 7827585]
Engel LS,Chow WH,Vaughan TL,Gammon MD,Risch HA,Stanford JL,Schoenberg JB,Mayne ST,Dubrow R,Rotterdam H,West AB,Blaser M,Blot WJ,Gail MH,Fraumeni JFJ. Population attributable risks of esophageal and gastric cancersJ Natl Cancer Inst 2003;95:1404–1413. [pmid: 13130116]
Li JY. Epidemiology of esophageal cancer in ChinaNatl Cancer Inst Monogr 1982;62:113–120. [pmid: 7167171]
Roth MJ,Guo-Qing W,Lewin KJ,Ning L,Dawsey SM,Wesley MN,Giffen C,Yong-Qiang X,Maher MM,Taylor PR. Histopathologic changes seen in esophagectomy specimens from the high-risk region of Linxian, China: potential clues to an etiologic exposure?Hum Pathol 1998;29:1294–1298. [pmid: 9824110] [doi: 10.1016/S0046-8177(98)90260-X]
Roth MJ,Strickland KL,Wang GQ,Rothman N,Greenberg A,Dawsey SM. High levels of carcinogenic polycyclic aromatic hydrocarbons present within food from Linxian, China may contribute to that region's high incidence of oesophageal cancerEur J Cancer 1998;34:757–758. [pmid: 9713287] [doi: 10.1016/S0959-8049(98)00262-7]
Roth MJ,Y-L Q,Rothman N,J. T,Dawsey SM,Wang GQ,Cho SH,Kang D,Taylor PR,Strickland PT. High urine 1-hydroxypyrene glucuronide concentrations in Linxina, China, an area of high-risk for squamous oesophageal cancerBiomarkers 2001;6:381–386. [doi: 10.1080/13547500110044780]
Yang CS. Research on esophageal cancer in China: a reviewCancer Res 1980;40:2633–2644. [pmid: 6992989]
Culp SJ,Gaylor DW,Sheldon WG,Goldstein LS,Beland FA. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassayCarcinogenesis 1998;19:117–124. [pmid: 9472702] [doi: 10.1093/carcin/19.1.117]
Finkelman RB,Belkin HE,Zheng B. Health impacts of domestic coal use in ChinaProc Natl Acad Sci U S A 1999;96:3427–3431. [pmid: 10097053] [doi: 10.1073/pnas.96.7.3427]
Phillips DH. Polycyclic aromatic hydrocarbons in the dietMutat Res 1999;443:139–147. [pmid: 10415437]
Siwinska E,Mielzynska D,Bubak A,Smolik E. The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyreneMutat Res 1999;445:147–153. [pmid: 10575425]
Bouchard M,Viau C. Urinary 1-hydroxypyrene as a biomarker of exposure to polycyclic aromatic hydrocarbonsBiomarkers 1999;4:159–187. [doi: 10.1080/135475099230859]
Buckley TJ,Waldman JM,Dhara R,Greenberg A,Ouyang Z,Lioy PJ. An assessment of a urinary biomarker for total human environmental exposure to benzo[a]pyreneInt Arch Occup Environ Health 1995;67:257–266. [pmid: 7591187] [doi: 10.1007/BF00409408]
Jongeneelen FJ,Bos RP,Anzion RB,Theuws JL,Henderson PT. Biological monitoring of polycyclic aromatic hydrocarbons. Metabolites in urineScand J Work Environ Health 1986;12:137–143. [pmid: 3726495]
Kang D,Rothman N,Cho SH,Lim HS,Kwon HJ,Kim SM,Schwartz B,Strickland PT. Association of exposure to polycyclic aromatic hydrocarbons (estimated from job category) with concentration of 1-hydroxypyrene glucuronide in urine from workers at a steel plantOccup Environ Med 1995;52:593–599. [pmid: 7550799]
Merlo F,Andreassen A,Weston A,Pan CF,Haugen A,Valerio F,Reggiardo G,Fontana V,Garte S,Puntoni R,Abbondandolo A. Urinary excretion of 1-hydroxypyrene as a marker for exposure to urban air levels of polycyclic aromatic hydrocarbonsCancer Epidemiol Biomarkers Prev 1998;7:147–155. [pmid: 9488590]
Zhao ZH,Quan WY,Tian DH. Urinary 1-hydroxypyrene as an indicator of human exposure to ambient polycyclic aromatic hydrocarbons in a coal-burning environmentSci Total Environ 1990;92:145-54.:145–154. [pmid: 2326620] [doi: 10.1016/0048-9697(90)90326-P]
Kamangar F,Strickland PT,Pourshams A,Malekzadeh R,Boffetta P,Roth MJ,Abnet CC,Saadatian-Elahi M,Rakhshani N,Brennan P,Etemadi A,Dawsey SM. High exposure to polycyclic aromatic hydrocarbons may contribute to high risk of esophageal cancer in northeastern IranAnticancer Res 2005;25:425–428. [pmid: 15816606]
Kang DH,Rothman N,Poirier MC,Greenberg A,Hsu CH,Schwartz BS,Baser ME,Groopman JD,Weston A,Strickland PT. Interindividual differences in the concentration of 1-hydroxypyrene-glucuronide in urine and polycyclic aromatic hydrocarbon-DNA adducts in peripheral white blood cells after charbroiled beef consumptionCarcinogenesis 1995;16:1079–1085. [pmid: 7767968]
Sinha R. An epidemiologic approach to studying heterocyclic aminesMutat Res 2002;506-507:197-204.:197–204. [pmid: 12351159]
de Barros SG,Ghisolfi ES,Luz LP,Barlem GG,Vidal RM,Wolff FH,Magno VA,Breyer HP,Dietz J,Gruber AC,Kruel CD,Prolla JC. [High temperature "mate" infusion drinking in a population at risk for squamous cell carcinoma of the esophagus]Arq Gastroenterol 2000;37:25–30. [pmid: 10962624]
Victora CG,Munoz N,Horta BL,Ramos EO. Patterns of mat? drinking in a Brazilian cityCancer Res 1990;50:7112–7115. [pmid: 2224846]
Fonseca CA,Otto SS,Paumgartten FJ,Leitao AC. Nontoxic, mutagenic, and clastogenic activities of Mate-Chimarrao (Ilex paraguariensis)J Environ Pathol Toxicol Oncol 2000;19:333–346. [pmid: 11213015]
Ruschenburg U. Benzo[a]pyrene content of coffee and some other foodstuffs (Ger.)IIe Colloque Scientifique International sur le Caf?, Lom? 1985 1985Paris, Association Scientifique International du Caf?; :205–212.

Figures

[Figure ID: F1]
Figure 1 

Urine 1-hydroxypyrene glucuronide concentration plotted by mat? consumption and tobacco smoke exposure. We divided subjects into four groups by whether they ever consumed mat? and whether they were smoke exposed (currently smoked tobacco or had a urine cotinine greater than category 1). Urine 1-OHPG concentration is plotted on the log scale. From left to right, the median for each group is indicated by the horizontal bar and the values are 0.3, 2.0, 2.4, and 3.4, respectively. From left to right, the number of subjects in each group is 28, 57, 17, and 97, respectively.



[Figure ID: F2]
Figure 2 

Urine 1-hydroxypyrene glucuronide concentration plotted by frequency of barbeque preparation and tobacco smoke exposure. We divided subjects into four groups by whether they prepared barbeque at least once a week and whether they were smoke exposed (currently smoked tobacco or had a urine cotinine greater than category 1). Urine 1-OHPG concentration is plotted on the log scale. From left to right, the median for each group is indicated by the horizontal bar and the values are 0.8, 1.7, 3.1, and 3.7, respectively. From left to right, the number of subjects in each group is 60, 25, 85, and 29, respectively.



Tables
[TableWrap ID: T1] Table 1 

Characteristics and univariate comparisons of urine 1-hydroxypyrene glucuronide (1-OHPG) concentration in 199 healthy subjects from Rio Grande de Sul


Characteristic Category N (%) 1-OHPG (pmol/ml) median (IQR) P-value [1]
Age quartile 1 <= 35 52 (26%) 1.90 (0.23?3.55) 0.027
Age quartile 2 >35 49 (25%) 1.90 (0.76?5.58)
Age quartile 3 >45 52 (26%) 3.65 (1.36?7.58)
Age quartile 4 >58 46 (23%) 1.55 (0.22?5.01)
Sex, N (%) Males 98 (49%) 2.19 (1.02?4.95) 0.52
Females 101 (51%) 2.03 (0.06?7.23)
Residence, N (%) Rural 35 (18%) 1.97 (0.76?7.49) 0.91
Urban 160 (82%) 2.16 (0.48?5.30)
Ever drink mat?, N (%) No 45 (23%) 1.02 (0.05?2.03) 0.0004
Yes 154 (77%) 2.70 (0.89?6.92)
Mat? quartile 1 <100 mls/day 53 (27%) 1.01 (0.05?2.16) 0.0001
Mat? quartile 2 >100 mls/day 66 (33%) 1.97 (0.33?5.58)
Mat? quartile 3 >500 mls/day 38 (19%) 3.24 (1.40?8.15)
Mat? quartile 4 >1000 mls/day 42 (21%) 4.06 (1.21?8.50)
Current tobacco smoker, N (%) No 103 (52%) 1.14 (0.05?3.17) <0.0001
Yes 96 (48%) 3.76 (1.52?8.57)
Ever regular tobacco smoker, N (%) No 71 (36%) 1.14 (0.05?2.35) <0.0001
Yes 128 (64%) 3.41 (1.09?7.88)
Urine cotinine, N (%) 0 (<1?10 ng/mL) 49 (25%) 0.89 (0.05?2.35) <0.0001
1 (10?30) 41 (21%) 1.52 (0.05?4.00)
2,3,4 (30?500) 39 (20%) 1.40 (0.29?3.68)
5 (500?2000) 36 (18%) 4.89 (1.74?8.69)
6 (>2000) 34 (17%) 7.36 (2.66?7.36)
Smoke Exposure2 No 85 (43%) 1.14 (0.051?3.17) <0.0001
Yes 114 (57%) 3.30 (1.40?8.15)
Ever prepare BBQ, N (%) No 107 (54%) 2.03 (0.08?5.58) 0.31
Yes 92 (46%) 2.136 (0.92?6.22)
Prepared BBQ in the last week, N (%) No 148 (74%) 2.09 (0.31?5.60) 0.63
Yes 51 (26%) 2.09 (0.76?6.60)
Prepare BBQ at least once a week, N (%) No 145 (73%) 2.22 (0.33?5.84) 0.88
Yes 54 (27%) 1.94 (0.95?5.90)
Ever eat BBQ well done, N (%) No 56 (28%) 2.09 (0.24?7.52) 0.82
Yes 143 (72%) 2.09 (0.57?5.58)
Ever drink beer, N (%) No 126 (63%) 2.44 (0.30?6.92) 0.92
Yes 73 (37%) 2.03 (1.02?4.63)
Ever drink wine, N (%) No 168 (84%) 2.22 (0.05?6.66) 0.62
Yes 31 (16%) 1.97 (1.27?3.30)
Ever drink cachaca, N (%) No 165 (83%) 1.97 (0.33?5.39) 0.03
Yes 34 (17%) 3.46 (1.52?8.19)

[1] All P-values come from the Wilcoxon rank sum test and the two-sided normal approximation P, except cotinine and mate quartile p-values which came from the Kruskal-Wallis test.

[2] We defined smoke exposed subjects as subjects who are current tobacco smokers or have a cotinine value greater than category 1 (> 30 ng/mL).


[TableWrap ID: T2] Table 2 

Multivariate associations1 between characteristics and urine 1-hydroxypyrene glucuronide (1-OHPG) concentration in the healthy subjects from Rio Grande de Sul


Characteristic Estimate [2] 95% Confidence interval P-value [3]
Intercept -0.74 -1.56, 0.079 0.076
Male -0.048 -0.31, 0.22 0.72
Urban residence 0.028 -0.28, 0.33 0.86
Ever drink cachaHa 0.20 -0.13, 0.54 0.23
Age quartile 1 Reference
Age quartile 2 0.097 -0.23, 0.42 0.56
Age quartile 3 0.40 0.082, 0.72 0.014
Age quartile 4 0.17 -0.17, 0.50 0.33
Smoke Exposure4 0.98 0.045, 1.52 0.0004
Mat? 0.53 0.16, 0.90 0.0053
Interaction (Smoke * Mat?) -0.51 -1.05, 0.10 0.11
Prepare barbeque weekly 0.21 -0.20, 0.62 0.32
Interaction (Smoke * BBQ) -0.48 -1.026, 0.015 0.057

[1] All estimates come from a single multivariate linear regression model. The total model r2 was 0.21

[2] The model was fit using log10 transformed urine 1-OHPG concentrations.

[3] All P-values come from F-tests.

[4] Subjects reporting current smoking or a cotinine value greater then 1 were considered smoke exposed.



Article Categories:
  • Research Article


Previous Document:  "That never would have occurred to me": a qualitative study of medical students' views of a cultural...
Next Document:  A placebo-controlled pilot study of intensification of antiretroviral therapy with mycophenolate mof...