Document Detail

High Yield, Reproducible and Quasi-Automated Bilayer Formation in a Microfluidic Format.
MedLine Citation:
PMID:  23139010     Owner:  NLM     Status:  Publisher    
A microfluidic platform is reported for various experimentation schemes on cell membrane models and membrane proteins using a combination of electrical and optical measurements, including confocal microscopy. Bilayer lipid membranes (BLMs) are prepared in the device upon spontaneous and instantaneous thinning of the lipid solution in a 100-μm dry-etched aperture in a 12.5-μm thick Teflon foil. Using this quasi-automated approach, a remarkable 100% membrane formation yield is reached (including reflushing in 4% of the cases), and BLMs are stable for up to 36 h. Furthermore, the potential of this platform is demonstrated for (i) the in-depth characterization of BLMs comprising both synthetic and natural lipids (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and L-α-phosphatidylcholine (L-α-PC)/cholesterol, respectively) in terms of seal resistance, capacitance, surface area, specific capacitance, and membrane hydrophobic thickness; (ii) confocal microscopy imaging of phase separation in sphingomyelin/L-α-PC/cholesterol ternary membranes; (iii) electrical measurements of individual nanopores (α-hemolysin, gramicidin); and (iv) indirect assessment of the alteration of membrane properties upon exposure to chemical stimuli using the natural nanopore gramicidin as a sensor.
Verena C Stimberg; Johan G Bomer; Iris van Uitert; Albert van den Berg; Séverine Le Gac
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-9
Journal Detail:
Title:  Small (Weinheim an der Bergstrasse, Germany)     Volume:  -     ISSN:  1613-6829     ISO Abbreviation:  Small     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-9     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101235338     Medline TA:  Small     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BIOS-Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Late-onset spinal accessory nerve palsy after traffic accident: case report.
Next Document:  Fall incidence and outcomes of falls in a prospective study of adults with rheumatoid arthritis.