Document Detail

Hierarchical assembly of ultrathin hexagonal SnS(2) nanosheets onto electrospun TiO(2) nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer.
MedLine Citation:
PMID:  23202888     Owner:  NLM     Status:  Publisher    
Well-designed hierarchical nanostructures with one dimensional (1D) TiO(2) nanofibers (120-350 nm in diameter and several micrometers in length) and ultrathin hexagonal SnS(2) nanosheets (40-70 nm in lateral size and 4-8 nm in thickness) were successfully synthesized by combining the electrospinning technique (for TiO(2) nanofibers) and a hydrothermal growth method (for SnS(2) nanosheets). The single-crystalline SnS(2) nanosheets with a 2D layered structure were uniformly grown onto the electrospun TiO(2) nanofibers consisted of either anatase (A) phase or anatase-rutile (AR) mixed phase TiO(2) nanoparticles. The definite heterojunction interface between SnS(2) nanosheets and TiO(2) (A or R) nanoparticles were investigated by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared SnS(2)/TiO(2) hierarchical nanostructures as nanoheterojunction photocatalysts exhibited excellent UV and visible light photocatalytic activities for the degradation of organic dyes (rhodamine B and methyl orange) and phenols (4-nitrophenol), remarkably superior to the TiO(2) nanofibers and the SnS(2) nanosheets, mainly owing to the photoinduced interfacial charge transfer based on the photosynergistic effect of the SnS(2)/TiO(2) heterojunction. Significantly, the SnS(2)/TiO(2) (AR) hierarchical nanostructures as the tricomponent heterojunction system possessed stronger photocatalytic activity than the bicomponent heterojunction system of SnS(2)/TiO(2) (A) hierarchical nanostructures or TiO(2) (AR) nanofibers, which was discussed in terms of the three-way photosynergistic effect between SnS(2), TiO(2) (A) and TiO(2) (R) component in the SnS(2)/TiO(2) (AR) heterojunction resulting in the high separation efficiency of photoinduced electron-hole pairs, as evidenced by photoluminescence (PL) and surface photovoltage spectra (SPS).
Zhenyi Zhang; Changlu Shao; Xinghua Li; Yangyang Sun; Mingyi Zhang; Jingbo Mu; Peng Zhang; Zengcai Guo; Yichun Liu
Related Documents :
23015768 - Briareolate esters from the gorgonian briareum asbestinum.
23053968 - Intracellular cu/zn superoxide dismutase (cu/zn-sod) from hard clam meretrix meretrix: ...
24727798 - A {0001} faceted single crystal nis nanosheet electrocatalyst for dye-sensitised solar ...
24424818 - Thermoluminescence properties of the isolated photosystem two reaction centre.
21291198 - Controlled modulation of electronic properties of graphene by self-assembled monolayers...
24912978 - Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a ...
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-3
Journal Detail:
Title:  Nanoscale     Volume:  -     ISSN:  2040-3372     ISO Abbreviation:  Nanoscale     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-12-3     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101525249     Medline TA:  Nanoscale     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Non-suicidal self-injury.
Next Document:  Prognostic and Predictive Roles of KRAS Mutation in Colorectal Cancer.