Document Detail

"Hexagonal molybdenum trioxide"--known for 100 years and still a fount of new discoveries.
MedLine Citation:
PMID:  20839845     Owner:  NLM     Status:  In-Process    
In 1906, the preparation of “molybdic acid hydrate” was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO3−NH3−H2O, have been published. The reported molecular formulas of “hexagonal molybdenum oxide” varied from MoO3 to MoO3·0.33NH3 to MoO3·nH2O (0.09 ≤ n ≤ 0.69) to MoO3·mNH3·nH2O (0.09 ≤ m ≤ 0.20; 0.18 ≤ n ≤ 0.60). Samples, prepared by the acidification route were investigated using thermal analysis coupled online to a mass spectrometer for evolved gas analysis, X-ray powder diffraction, Fourier transform infrared, Raman, magic-angle-spinning 1H- and 15N NMR spectroscopy, and incoherent inelastic neutron scattering. A comprehensive characterization of these samples will lead to a better understanding of their structure and physical properties as well as uncover the underlying relationship between the various compositions. The synthesized polymeric parent samples can be represented by the structural formula (NH4)(x∞)(3)[Mo(y square 1−y)O(3y)(OH)(x)(H2O)(m−n)]·nH2O with 0.10 ≤ x ≤ 0.14, 0.84 ≤ y ≤ 0.88, and m + n ≥ 3 − x − 3y. The X-ray study of a selected monocrystal confirmed the presence of the well-known 3D framework of edge- and corner-sharing MoO6 octahedra. The colorless monocrystal crystallizes in the hexagonal system with space group P6(3)/m, Z = 6, and unit cell parameters of a = 10.527(1) Å, c = 3.7245(7) Å, V = 357.44(8) Å3, and ρ = 3.73 g·cm(−3). The structure of the prepared monocrystal can best be described by the structural formula (NH4)(0.13∞)(3)[Mo(0.86 square 0.14)O2.58(OH)0.13(H2O)(0.29−n)]·nH2O, which is consistent with the existence of one vacancy (square) for six molybdenum sites. The sample MoO3·0.326NH3·0.343H2O, prepared by the ammoniation of a partially dehydrated MoO3·0.170NH3·0.153H2O with dry gaseous ammonia, accommodates NH3 in the hexagonal tunnels, in addition to [NH4]+ cations and H2O. The “chimie douce” reaction of MoO3·0.155NH3·0.440H2O with a 1:1 mixture of NO/NO2 at 100 °C resulted in the synthesis of MoO3·0.539H2O. This material is of great interest as a host of various molecules and cations.
Hans-Joachim Lunk; Hans Hartl; Monika A Hartl; Martin J G Fait; Ilya G Shenderovich; Michael Feist; Timothy A Frisk; Luke L Daemen; Daniel Mauder; Reinhard Eckelt; Andrey A Gurinov
Related Documents :
18024955 - Controlled comparison between betamethasone gel and lidocaine jelly applied over trache...
18083585 - Sensory results after lateral rectus muscle recession for intermittent exotropia operat...
19182765 - Prismatic correction of residual esotropia of 20 prism dioptres or less after full hype...
12169905 - Long-term follow-up of fat injection laryngoplasty for unilateral vocal cord paralysis.
21424205 - B-type natriuretic peptide increases after gastric bypass surgery and correlates with w...
10536945 - Emphysema surgery--loop ligation approach.
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Inorganic chemistry     Volume:  49     ISSN:  1520-510X     ISO Abbreviation:  Inorg Chem     Publication Date:  2010 Oct 
Date Detail:
Created Date:  2010-10-12     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0366543     Medline TA:  Inorg Chem     Country:  United States    
Other Details:
Languages:  eng     Pagination:  9400-8     Citation Subset:  -    
Global Tungsten and Powders Corp., Towanda, Pennsylvania 18848, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes.
Next Document:  The reaction chemistry of plutonyl(VI) chloride complexes with triphenyl phosphineoxide and tripheny...