Document Detail

Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency.
Jump to Full Text
MedLine Citation:
PMID:  22254090     Owner:  NLM     Status:  MEDLINE    
Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as: control (ad libitum water), fructose (ad libitum 30% fructose-sweetened liquid), glucose (ad libitum 30% glucose-sweetened water) and pair-fed (ad libitum water and sulfur amino acid intake same as the fructose group). Hepatic and plasma thiol-disulfide antioxidant status were analyzed after five weeks. Fructose- and glucose-fed mice developed fatty liver. The mitochondrial antioxidant protein, thioredoxin-2, displayed decreased abundance in the liver of fructose and glucose-fed mice compared to controls. Glutathione/glutathione disulfide redox potential (E(h)GSSG) and abundance of the cytoplasmic antioxidant protein, peroxiredoxin-2, were similar among groups. We conclude that both fructose and glucose-sweetened liquid consumption results in fatty liver and upregulated thioredoxin-2 expression, consistent with mitochondrial oxidative stress; however, inadequate sulfur amino acid intake was not the cause of this oxidative stress.
Sachin S Kunde; James R Roede; Miriam B Vos; Michael L Orr; Young-Mi Go; Youngja Park; Thomas R Ziegler; Dean P Jones
Publication Detail:
Type:  Journal Article; Research Support, N.I.H., Extramural     Date:  2011-11-18
Journal Detail:
Title:  Nutrients     Volume:  3     ISSN:  2072-6643     ISO Abbreviation:  Nutrients     Publication Date:  2011 Nov 
Date Detail:
Created Date:  2012-02-08     Completed Date:  2012-05-14     Revised Date:  2013-06-26    
Medline Journal Info:
Nlm Unique ID:  101521595     Medline TA:  Nutrients     Country:  Switzerland    
Other Details:
Languages:  eng     Pagination:  987-1002     Citation Subset:  IM    
Division of Gastroenterology, Hepatology and Nutrition, Emory Children's Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Amino Acids, Sulfur / administration & dosage*,  deficiency
Biological Assay
Blotting, Western
Case-Control Studies
Disease Models, Animal
Fatty Liver / chemically induced,  metabolism*
Fructose / pharmacology*
Glucose / pharmacology*
Mice, Inbred C57BL
Oxidative Stress / physiology
Peroxiredoxins / metabolism
Sweetening Agents / pharmacology*
Thioredoxins / metabolism
Grant Support
Reg. No./Substance:
0/Amino Acids, Sulfur; 0/Sweetening Agents; 0/Txn2 protein, mouse; 30237-26-4/Fructose; 50-99-7/Glucose; 52500-60-4/Thioredoxins; EC

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Nutrients
Journal ID (publisher-id): nutrients
ISSN: 2072-6643
Publisher: MDPI
Article Information
Download PDF
© 2011 by the authors; licensee MDPI, Basel, Switzerland.
Received Day: 19 Month: 9 Year: 2011
Revision Received Day: 24 Month: 10 Year: 2011
Accepted Day: 04 Month: 11 Year: 2011
Electronic publication date: Day: 18 Month: 11 Year: 2011
collection publication date: Month: 11 Year: 2011
Volume: 3 Issue: 11
First Page: 987 Last Page: 1002
ID: 3257721
PubMed Id: 22254090
DOI: 10.3390/nu3110987
Publisher Id: nutrients-03-00987

Hepatic Oxidative Stress in Fructose-Induced Fatty Liver Is Not Caused by Sulfur Amino Acid Insufficiency
Sachin S. Kunde1*
James R. Roede2
Miriam B. Vos1
Michael L. Orr2
Young-Mi Go2
Youngja Park2
Thomas R. Ziegler3
Dean P. Jones2
1 Division of Gastroenterology, Hepatology and Nutrition, Emory Children’s Center, 2015 Uppergate Dr NE, Emory University School of Medicine, Atlanta, GA 30322, USA; Email:
2 Whitehead Biomedical Research Bldg. Division of Pulmonary, Allergy and Critical Care Medicine, 615 Michael St, Emory University School of Medicine, Ste 205P, Atlanta, GA 30322, USA; Email: (J.R.R.); (M.L.O.); (Y.-M.G.); (Y.P.); (D.P.J.)
3 Department of Medicine, GG23 Emory University Hospital, 1600/002/1AA, 1364 Clifton Rd, Atlanta, GA 30322, USA; Email:
* Author to whom correspondence should be addressed; Email:; Tel.: +1-678-702-6595.

1. Introduction

Consumption of refined sugars has increased over the past decades [1,2] and fructose, in particular, has been implicated as a contributing factor in the development of metabolic diseases [3]. These diseases include conditions such as obesity, dyslipidemia, insulin resistance, diabetes, high blood pressure [4,5,6,7,8,9,10,11,12,13], and non-alcoholic fatty liver disease [14,15,16,17,18]. The etiology of fructose-mediated metabolic disturbances is not completely understood; however, it is likely due to a multifactorial disease process [4,5,9,19,20]. Fructose consumption and its metabolic alterations, including fatty liver, have been associated with oxidative stress [21,22,23,24,25,26,27,28,29,30,31,32,33], which may play role in the pathogenesis of these conditions.

In animal models, fructose-sweetened beverage consumption is associated with decreased food and protein intake [34,35,36]. Therefore, inadequate ingestion of macronutrients and energy from solid foods may be important in the metabolic alterations attributed to fructose-sweetened beverages [20,37,38,39,40,41,42,43]. In rodents, when fructose-sweetened liquid is provided ad libitum, liquid intake increases and solid food consumption decreases, while total energy intake is maintained at a level comparable to controls [34,44,45]. This resultant decrease in solid food results in decreased protein consumption and insufficient intake of non-essential and essential amino acids, which includes the sulfur amino acids, i.e., cysteine (Cys) and methionine.

All cells have thiol-dependent antioxidant systems that are critical in redox regulation of cellular processes, like gene transcription, and protection against oxidative stress [46]. Major thiol-containing redox couples (GSH/GSSG, thioredoxin (Trx) and peroxiredoxin (Prx)) contain Cys as a central thiol and oxidation of these residues provide useful markers of oxidative stress [47]. In humans, Cys deficiency can lead to plasma oxidative stress [48], and in rodents, dietary sulfur amino acid insufficiency causes plasma and tissue level oxidative stress [49,50], as shown by steady-state redox potentials (Eh) for GSH/GSSG and Cys/CySS redox couples. Because fructose-sweetened beverages decrease dietary sulfur amino acid intake and sulfur amino acid insufficiency causes oxidative stress, it is possible that decreased sulfur amino acid intake may contribute to oxidative stress observed in fructose-induced fatty liver. Therefore, the purpose of this study was to determine if oxidative stress associated with fructose-induced fatty liver was due to decreased sulfur amino acid intake. In the experimental design, pair-feeding of mice with the amount of solid food consumed by the fructose group resulted in substantial energy deficiency in the pair-fed group. Despite this difference in energy intake, the pair-fed group did not show hepatic oxidative stress either in terms of thiol/disulphide levels or mitochondrial thioredoxin-2 or cytoplasmic/nuclear peroredoxin-2 levels. Thus, the results show that fructose- or glucose-induced fatty liver is not an artefact due to oxidative stress caused by insufficient protein intake.

2. Materials and Methods
2.1. Animals and Feeding Protocol

This protocol was approved by the Institutional Animal Care and Use Committee at Emory University and performed according to NIH guidelines. The study outlined below was repeated in two separate experiments to confirm findings. Results were similar for both experiments and combined for presentation.

Five week-old C57BL6 male mice (N = 39) were purchased from Charles River Laboratory. Anhydrous dextrose and D-fructose were purchased from Harlan Teklad. Mice were housed in individual cages in a pathogen-free barrier facility. During an initial acclimatization period of 1 week, all mice received water ad libitum and solid food ad libitum (LabDiet-5001, AIN 93M, PMI Nutrition International). Methionine (Met) and Cys content of the diet were 0.67% and 0.31%, respectively. At 6 weeks of age, mice were allocated to four groups: control (ad libitum water and ad libitum solid food; n = 10), fructose (ad libitum 30% fructose-sweetened water (w/v) and ad libitum solid food; n = 11), glucose (ad libitum 30% dextrose-sweetened water (w/v) and ad libitum solid food; n = 10) and a pair fed group (ad libitum water, pair fed to fructose for solid food intake of F; n = 8). The pair-fed animals were started on dietary intervention one day after starting the fructose-fed mice and the mean daily individual food consumption of the fructose group was fed to individual pair-fed mice. Mice were examined daily for signs of dehydration and distress. Body weight and water and food consumption, were measured every other day. After 5 weeks, at sacrifice, animals were anesthetized with 80 mg/kg ketamine and 6 mg/kg xylazine i.p. Blood was collected from a cheek and 50 µL of plasma was processed for Cys, CySS, GSH and GSSG analyses by high performance liquid chromatography (HPLC) as previously outlined [49,50]. Portions of liver (approximately 5 mg) were immediately added to preservation solution for redox measurements [49,50]. Additional samples were snap frozen in liquid nitrogen or placed in OCT compound for cryosectioning and Oil Red O staining and stored at −80 °C. Because of a laboratory error, samples for Oil Red O staining were not available for the glucose-treated group. Because glucose-induced fatty liver is established in the literature [29,51] and confirmed by the triglyceride measurements obtained in the present studies, the experiment was not repeated to obtain this additional control.

2.2. Analytical Methods

Plasma and hepatic Cys, CySS, GSH and GSSG concentrations were measured using HPLC. Methods were adopted from Jones et al. and Nkabyo et al. [49,52,53]. Protein concentration of liver samples was measured using the Bradford assay. EhCyss and EhGSSG were calculated using the Nernst Equation. Percent of oxidized thiol (% CySS and % GSSG) was calculated with respect to thiol concentration (oxidized + reduced + mixed disulfide Cys-GSH). Plasma Met concentration was measured as an additional indicator of plasma sulfur amino acid levels using liquid chromatography mass spectrometry (LC-FTMS) with electrospray ionization in positive ion mode essentially as described by Johnson et al. [54]. Plasma samples with visible hemolysis were excluded. Plasma extracts were separated using anion exchange chromatography and detected using LTQ-FT mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Met (m/z 149.0510) was quantified relative to a stable isotopic internal standard. Hepatic triglycerides (TG) were assayed using a TG quantification kit (BioVision, CA; cat# K622-100). Liver samples (approximately 100 mg) were collected into 1 mL of 5× Triton-X solution, homogenized and processed per manufacturer’s instructions. For TG quantification, absorbance at 570 nm was calibrated to reference standards and data were expressed as nmol/100 mg of liver tissue.

2.3. Western Blot Analyses

Hepatic protein abundance of thioredoxin-2 (Trx2) and peroxiredoxin-2 (Prx2) was analysed by Western blot. Liver (approximately 5 mg) was washed with ice cold PBS and immediately placed in 300 µL lysis buffer (1% NP-40, 0.5% Triton X-100, 50 mM Tris, 2 mM EDTA, 500 mM NaCl, protease inhibitor; pH 7.6), sonicated, vortexed, and centrifuged. Supernatant was used for protein quantification and Western blot analysis.

For all Western blots, 20 µg of protein was loaded in each well, separated using 15% SDS polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes. After blocking, the membranes were incubated with primary antibodies specific to Trx-2 [55], Prx2 (Abcam16748), COX-IV (Abcam16056 as a mitochondrial control protein) or β-actin (Sigma-Aldrich A5441) for 1 h followed by the secondary antibody (IRDyeTM-800-conjugated anti-rabbit or anti-mouse antibody (Rockland Immuno chemicals, Gilbertsville, PA)) for 1 h. Protein bands were visualized by the Odyssey system (LiCor, Lincoln, NE) and quantified by densitometry.

2.4. Thiobarbituric Acid Reactive Substances Assay

A small amount of frozen liver tissue was placed in a 1.5 mL tube containing 200 μL of RIPA buffer. The samples were then sonicated for approximately 10 s to homogenize the tissue. Insoluble debris was pelleted via centrifugation and 100 μL of supernantant was added to 200 μL of 10% trichloroacetic acid. The samples were incubated on ice for 15 min and the precipitated protein was pelleted by centrifugation. 200 μL of supernatant was added to 200 μL of 0.67% (w/v) 2-thiobarbituric acid and incubated for 15 min at 100 °C. Samples were cooled to room temperature and absorbance at 532 nm was read on a microplate reader.

2.5. Oil Red O Staining

Liver tissue preserved in OCT compound was cryosectioned into 10 µM sections, mounted onto microscope slides and stored at −10 °C until staining. Slides were allowed to acclimate to room temperature for approximately 10-15 min prior to staining. Tissue was then fixed in 10% neutral buffered formalin for 5 min and briefly washed in water. The slides were then rinsed in 60% isopropanol and placed into freshly prepared Oil Red O working solution. Slides were allowed to stain for 15 min at room temperature. After staining, slides were rinsed with 60% isopropanol and the nuclei were lightly stained with hematoxylin stain (approx. 5 dips). Lastly, the slides were washed 3 times in water and coverslips were applied using aqueous mounting media. The slides were then visualized on a light microscope at 100× magnification.

2.6. Statistical Analysis

Data are expressed as mean ± SEM. Statistical analysis was performed using SPSS 16.0 (IBM, Chicago, IL). ANOVA with Tukey’s post-hoc test was used to compare the groups. p ≤ 0.05 was considered statistically significant.

3. Results
3.1. Fatty Liver

Fructose and glucose fed mice developed fatty liver as evidenced by significantly higher hepatic TG content (75 ± 4 nmol/100 mg and 70 ± 5 nmol/100 mg, respectively) compared to control and pair-fed mice (44 ± 1 nmol/100 mg and 41 ± 2 nmol/100 mg), respectively (each p < 0.05). To confirm the development of hepatic steatosis, frozen liver sections were stained with Oil Red O to visualize lipid accumulation (Figure 1). Results from fructose-fed mice confirmed fatty liver; samples from glucose-treated mice were not available, but glucose-induced fatty liver has been previously established [29,51] and confirmed in the present study by the TG measurements. Together, these data show that both fructose and glucose cause fatty liver.

3.2. Animal Characteristics

Body weight and food consumption data are detailed in Table 1.

Initial body weights were similar for all groups. At the end of dietary treatment, the fructose and glucose-fed groups had a 10% and 25% weight gain respectively, compared to control. The pair-fed group lost weight during the course of the study because the design resulted in a relatively severe calorie restriction. However, these mice remained active and did not show any signs of distress. Consumption of fructose or glucose supplemented water resulted in a 38% and 54% decrease in solid food (and thus sulfur amino acid intake) consumption respectively, compared to control. Dietary liquid consumption was different across all the groups. Fructose-fed and glucose-fed mice had 42% and 98% higher, while the pair-fed mice had 56% lower liquid intake respectively compared to controls. Total energy intake (solid food + liquid) in fructose-fed (18 ± 1 kcal/day) and glucose-fed (19 ± 1 kcal/day) mice was similar to control mice (16 ± 1 kcal/day) (Table 1). As liquid consumption in the fructose and glucose groups increased, solid food intake decreased and total energy intake was similar compared to controls. Glucose-fed mice consumed about 30% more energy (11.4 ± 1 kcal/day) from liquid than fructose-fed mice (8.1 ± 1 kcal/day). Energy intake for mice in the pair-fed group (10 ± 0 kcal/day) was 52-62% of other groups.

3.3. Plasma Sulfur Amino Acids

Plasma methionine levels were measured using LC-FTMS. The ion intensity of methionine in both fructose-fed and glucose-fed mice was similar to controls even though sulfur amino acid intake was lower (Figure 2). Pair-fed animals displayed methionine levels that were significantly lower than the other groups. Additionally, plasma Cys (Table 2) showed a trend similar to methionine and was also lower in pair-fed animals compared to other groups.

3.4. Plasma Oxidative Stress Indices

Even with the decreased sulfur amino acid intake due to fructose and glucose, plasma Cys, total Cys (Cys + CySS + Cys-GSH) and total GSH concentration (GSH + GSSG + Cys-GSH) were similar to control mice (Table 2). In contrast, GSH level was lower in fructose-fed and glucose-fed mice compared to control. Interestingly, the fructose and pair-fed groups had the same sulfur amino acid intake, but the pair-fed animals had lower plasma Cys, total Cys, GSH and total GSH. Pair-fed animals also had an increased % CySS (Figure 3) indicating greater systemic oxidative stress. GSH/GSSG ratio, Cys/CySS ratio and % GSSG were not different across groups (data not shown). Plasma EhCySS was more oxidized (more positive Eh) in pair-fed mice compared to control and fructose groups (Figure 4). EhGSSG values did not show significant differences between groups.

3.5. Hepatic Oxidative Stress

Similar to data from the plasma, hepatic Cys and GSH content was not different in the control, fructose and glucose groups, but was decreased in the pair-fed animals (Table 2). Thiobarbituric acid reactive substances (TBARS) in the liver, a common metric of oxidative stress and lipid peroxidation, showed that TBARS was increased due to fructose treatment but this was not statistically significant (Figure 5). Importantly, the pair-fed group did not show evidence of increase. In contrast to the plasma data described above, the relative concentrations of CySS and Cys shifted towards a more reduced state (Figure 4). GSH/GSSG ratio, Cys/CySS ratio and % GSSG did not differ across the groups (data not shown).

In contrast to plasma, hepatic % CySS was lower and EhCySS was more reduced in the pair-fed group (Figure 3). EhGSSG in control, fructose, glucose and pair-fed groups were not significantly different. Thus, even though there is an indication of systemic oxidative stress in plasma, the results do not provide evidence for hepatic oxidative stress as measured by the tissue TBARS, Cys/CySS and GSH/GSSG pools.

3.6. Antioxidant Protein Expression

Although the measurement of liver Cys/CySS and GSH/GSSG pools do not provide evidence of oxidative stress in the pair-fed group, these measures do not discriminate between effects in different subcellular compartments. Because oxidative stress can cause specific responses in subcellular compartments, we assessed the compartmental effects of fructose and glucose by measuring the abundance of mitochondrial Trx2 and cytoplasmic/nuclear Prx2. The abundance of these key compartment-specific antioxidant proteins was assessed using Western blotting. When normalized to β-actin (Figure 6a), Trx2 abundance was significantly lower in the fructose-fed and glucose-fed groups (23% and 20% lower) respectively, compared to control (Figure 6b). In contrast to that of the carbohydrate fed mice, the pair-fed group had significantly higher (150%) abundance of hepatic Trx2 compared to control. No difference was observed for the cytoplasmic antioxidant Prx2. Measurement of a component of the mitochondrial respiratory apparatus, cytochrome c oxidase IV (COX-IV) was used as a control for mitochondrial abundance, and this showed that the content of mitochondria did not differ among the groups.

4. Discussion

In the present study, we used a controlled, pair-feeding protocol to test the hypothesis that decreased sulfur amino acid intake contributes to oxidative stress in an fructose-sweetened beverage model of fatty liver. Both fructose and glucose-fed mice developed fatty liver, but animals pair-fed with only sulfur amino acid deficiency did not. Fructose-fed and glucose-fed animals had similar total energy intake compared to control and displayed a similar decrease in hepatic Trx2 abundance when compared to controls. Pair-fed animals had similar sulfur amino acid intake as the fructose-fed mice, and showed increased Trx2 abundance in liver. Together, the results show that sulfur amino acid insufficiency is not the cause of oxidative stress in the models of fructose-sweetened liquid-induced fatty liver. Instead, the results suggest that disproportionately high energy intake from simple sugar (48% and 63% of total energy intake in fructose-fed and glucose-fed mice) may predispose mitochondria to oxidative stress. The carbohydrate-mediated decrease in Trx2 abundance is potentially important in terms of cell viability and liver damage, because Trx2 protects against oxidant-mediated apoptosis and can regulate the mitochondrial permeability transition [56,57].

Fructose-sweetened beverage intake is associated with decreased solid food and protein ingestion in obese and normal weight human subjects [34]. Raben et al. [35] showed a significant decrease in protein intake after consumption of sucrose-containing liquid. In rodents, Jurgens et al. [45] showed that after ad libitum fructose-containing liquid consumption, solid food intake was decreased, but total energy consumption was the same as controls. Our data are consistent with these previous studies showing that fructose-sweetened liquid consumption is associated with decreased solid food consumption, thus leading to insufficient sulfur amino acid intake. Deficiency of methionine, an essential amino acid, has been implicated in alcoholic liver disease and liver cirrhosis [10], secondary to its important role as a precursor of GSH. However, the potential role of dietary methionine in the pathogenesis of fatty liver does not appear to have been previously studied.

Our results on hepatic TG content are similar to those of Ngo Sock et al. [58], who recently showed that hepatic TG content was similar in glucose and fructose-fed rodents. Several metabolic effects of high-fructose diet such as obesity, fatty liver, and insulin resistance can also be observed with high-glucose diet [32,58,59,60,61]. Also, in the long term, the effects of high fructose and high glucose may not be different. As fructose-sweetened beverage consumption is associated with high energy intake [58,59,62], it is unclear whether these hyperenergetic conditions can account for the metabolic effects of fructose [58,59].

Most of the studies on fructose-sweetened liquid and fatty liver use products of lipid peroxidation as markers of oxidative stress and only few studies have evaluated enzymatic antioxidant systems [32,63]. To our knowledge, this is the first study evaluating hepatic mitochondrial and cytoplasmic antioxidant proteins and calculating the redox potentials of major thiol-disulfide couples in fructose-sweetened liquid model of fatty liver. Sumida et al. [64] showed a correlation between serum Trx levels and hepatic fat content in patients with fatty liver and proposed its usefulness in discriminating fatty liver from NASH. That study did not, however, evaluate hepatic Trx levels or specific Trx isoenzymes. Our study measured Trx2 abundance, which was decreased due to fructose and glucose feeding. These results suggest a predisposition to mitochondrial oxidative stress, which could be a pathogenic mechanism of fatty liver. This is different from a rodent study by Mellor et al. [25], which did not reveal any difference in myocardial Trx2 gene abundance due to a high fructose (60%) diet. This discrepancy could be explained by metabolic differences in these two organs as fructose is primarily metabolized in liver.

Machado et al. [63] showed that in patients with fatty liver, GSH metabolism is impaired towards oxidation, but plasma antioxidant markers do not correlate with hepatic redox states. We measured plasma redox potentials along with liver redox potentials to assess if there was any correlation between these two compartments. In our pair-fed group, hepatic EhCySS was reduced and Trx2 abundance increased; however plasma EhCySS was oxidized compared to control. These differences indicate that the redox compartments may act independently of each other [46]. Opposite redox effects in plasma and liver may be explained by energy restriction (40% of control in our study) leading to decreased metabolism in liver, which may result in less reactive oxygen species (ROS) formation in mitochondria. Alternatively, energy restriction can induce mitohormesis; an increased formation of ROS within mitochondria that causes an adaptive response providing stress resistance with a long-term reduction of oxidative stress [65]. Lastly, with the pair-fed animals being protein and energy restricted, they exhibited lower sulfur amino acid levels in both plasma and the liver. This can be explained by a marked reduction in protein synthesis and increase in protein half-lives; therefore, a lack of protein intake and decreased protein turnover could result in lower levels of tissue and circulating amino acids.

When comparing fructose-fed animals to glucose-fed animals, both groups had similar sulfur amino acid intake, total caloric intake, plasma and liver redox states and decrease in hepatic Trx2 abundance. A predisposition to hepatic mitochondrial oxidative stress as suggested by decreased Trx2 may be due to disproportionate energy intake from simple sugars, rather than decreased sulfur amino acid intake.

One of the limitations of our study was the design of the pair-fed group. We matched the fructose group for solid food intake but not for total energy intake. Because the restricted diet intake in the pair-fed animals also reduced caloric intake, a more precise design for the sulfur amino acid effect would be to supplement the diet composition of the pair-fed control group with non-carbohydrate energy sources (e.g., lipid) such that caloric intake in all four groups was similar. Future experiments with matched pair feeding according to macronutrient composition could potentially improve the models for fructose-sweetened liquid-induced fatty liver.

5. Conclusion

Fructose-sweetened liquid predisposes the liver to mitochondrial oxidative stress and causes fatty liver without plasma or cytoplasmic oxidative stress. The hypocaloric, pair-fed group displayed plasma, but not hepatic oxidative stress or fatty liver. Therefore, decreased sulfur amino acid intake, as occurs in models commonly used to study fructose-induced fatty liver, is not a cause of hepatic oxidative stress in this model and does not provide an explanation for fructose-induced lipid accumulation in this model.


This research was supported by grants from the National Institutes of Health (NIH) K23 DK080953 (M.B.V.), K24 RR023356 (T.R.Z.), R01 ES009047 (D.P.J.) and F32 ES019821 (J.R.R).


The study rules out a potential artifact of an important model used to study fructose-induced fatty liver. The study additionally shows the potential importance of mitochondrial oxidative stress in pathogenesis of fructose-induced fatty liver and that fructose and glucose-sweetened beverages may have similar hepatic metabolic, as evidenced by the equivalent liver TG outcomes, and redox effects.

Conflict of Interest

The authors declare no conflict of interest.

1.. Vos M.B.,Kimmons J.E.,Gillespie C.,Welsh J.,Blanck H.M.. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination SurveyMedscape J. Med.Year: 20081016018769702
2.. Wolf A.,Bray G.A.,Popkin B.M.. A short history of beverages and how our body treats themObes. Rev.Year: 2008915116418257753
3.. Bray G.A.,Nielsen S.J.,Popkin B.M.. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesityAm. J. Clin. Nutr.Year: 20047953754315051594
4.. Le K.A.,Tappy L.. Metabolic effects of fructoseCurr. Opin. Clin. Nutr. Metab. CareYear: 2006946947516778579
5.. Havel P.J.. Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolismNutr. Rev.Year: 20056313315715971409
6.. Bocarsly M.E.,Powell E.S.,Avena N.M.,Hoebel B.G.. High-fructose corn syrup causes characteristics of obesity in rats: Increased body weight, body fat and triglyceride levelsPharmacol. Biochem. Behav.Year: 20109710110620219526
7.. Anstee Q.M.,Goldin R.D.. Mouse models in non-alcoholic fatty liver disease and steatohepatitis researchInt. J. Exp. Pathol.Year: 20068711616436109
8.. Basciano H.,Federico L.,Adeli K.. Fructose, insulin resistance, and metabolic dyslipidemiaNutr. Metab. (Lond.)Year: 2005251572370210.1186/1743-7075-2-5
9.. Bizeau M.E.,Pagliassotti M.J.. Hepatic adaptations to sucrose and fructoseMetabolismYear: 2005541189120116125531
10.. Cave M.,Deaciuc I.,Mendez C.,Song Z.,Joshi-Barve S.,Barve S.,McClain C.. Nonalcoholic fatty liver disease: Predisposing factors and the role of nutritionJ. Nutr. Biochem.Year: 20071818419517296492
11.. Howard B.V.,Wylie-Rosett J.. Sugar and cardiovascular disease: A statement for healthcare professionals from the Committee on Nutrition of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart AssociationCirculationYear: 200210652352712135957
12.. Le K.A.,Bortolotti M.. Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver diseaseCurr. Opin. Clin. Nutr. Metab. CareYear: 20081147748218542010
13.. Stanhope K.L.,Havel P.J.. Fructose consumption: Recent results and their potential implicationsAnn. N. Y. Acad. Sci.Year: 20101190152420388133
14.. Davail S.,Rideau N.,Bernadet M.D.,Andre J.M.,Guy G.,Hoo-Paris R.. Effects of dietary fructose on liver steatosis in overfed mule ducksHorm. Metab. Res.Year: 200537323515702436
15.. Mendeloff A.I.,Weichselbaum T.E.. Role of the human liver in the assimilation of intravenously administered fructoseMetabolismYear: 1953245045813110753
16.. Ouyang X.,Cirillo P.,Sautin Y.,McCall S.,Bruchette J.L.,Diehl A.M.,Johnson R.J.,Abdelmalek M.F.. Fructose consumption as a risk factor for non-alcoholic fatty liver diseaseJ. Hepatol.Year: 20084899399918395287
17.. Assy N.,Nasser G.,Kamayse I.,Nseir W.,Beniashvili Z.,Djibre A.,Grosovski M.. Soft drink consumption linked with fatty liver in the absence of traditional risk factorsCan. J. Gastroenterol.Year: 20082281181618925303
18.. Huang D.,Dhawan T.,Young S.,Yong W.H.,Boros L.G.,Heaney A.P.. Fructose impairs glucose-induced hepatic triglyceride synthesisLipids Health Dis.Year: 2011102021261970
19.. Wei Y.,Wang D.,Topczewski F.,Pagliassotti M.J.. Fructose-mediated stress signaling in the liver: Implications for hepatic insulin resistanceJ. Nutr. Biochem.Year: 2007181916854579
20.. Bray G.A.. Soft drink consumption and obesity: It is all about fructoseCurr. Opin. Lipidol.Year: 201021515719956074
21.. Busserolles J.,Gueux E.,Rock E.,Mazur A.,Rayssiguier Y.. Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructoseJ. Nutr.Year: 20021323379338212421854
22.. Busserolles J.,Gueux E.,Rock E.,Demigne C.,Mazur A.,Rayssiguier Y.. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in ratsJ. Nutr.Year: 20031331903190812771337
23.. Wei Y.,Wang D.,Pagliassotti M.J.. Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat primary hepatocytesJ. Nutr.Year: 20051351642164615987843
24.. Vos M.B.,Weber M.B.,Welsh J.,Khatoon F.,Jones D.P.,Whitington P.F.,McClain C.J.. Fructose and oxidized low-density lipoprotein in pediatric nonalcoholic fatty liver disease: A pilot studyArch. Pediatr. Adolesc. Med.Year: 200916367467519581556
25.. Mellor K.,Ritchie R.H.,Meredith G.,Woodman O.L.,Morris M.J.,Delbridge L.M.. High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophyNutritionYear: 20102684284819932004
26.. Kelley G.L.,Allan G.,Azhar S.. High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulationEndocrinologyYear: 200414554855514576175
27.. Lee O.,Bruce W.R.,Dong Q.,Bruce J.,Mehta R.,O’Brien P.J.. Fructose and carbonyl metabolites as endogenous toxinsChem. Biol. Interact.Year: 200917833233919000661
28.. Nseir W.,Nassar F.,Assy N.. Soft drinks consumption and nonalcoholic fatty liver diseaseWorld J. Gastroenterol.Year: 2010162579258820518077
29.. Du D.,Shi Y.H.,Le G.W.. Oxidative stress induced by high-glucose diet in liver of C57BL/6J mice and its underlying mechanismMol. Biol. Rep.Year: 2010373833383920217240
30.. Delbosc S.,Paizanis E.,Magous R.,Araiz C.,Dimo T.,Cristol J.P.,Cros G.,Azay J.. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed ratAtherosclerosisYear: 2005179434915721008
31.. Nyby M.D.,Abedi K.,Smutko V.,Eslami P.,Tuck M.L.. Vascular Angiotensin type 1 receptor expression is associated with vascular dysfunction, oxidative stress and inflammation in fructose-fed ratsHypertens. Res.Year: 20073045145717587757
32.. Du D.,Shi Y.H.,Le G.W.. Oxidative stress induced by high-glucose diet in liver of C57BL/6J mice and its underlying mechanismMol. Biol. Rep.Year: 2010373833383920217240
33.. Miller A.,Adeli K.. Dietary fructose and the metabolic syndromeCurr. Opin. Gastroenterol.Year: 20082420420918301272
34.. Rodin J.. Comparative effects of fructose, aspartame, glucose, and water preloads on calorie and macronutrient intaAm. J. Clin. Nutr.Year: 1990514284352178391
35.. Raben A.,Vasilaras T.H.,Moller A.C.,Astrup A.. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjectsAm. J. Clin. Nutr.Year: 20027672172912324283
36.. Vartanian L.R.,Schwartz M.B.,Brownell K.D.. Effects of soft drink consumption on nutrition and health: A systematic review and meta-analysisAm. J. Public HealthYear: 20079766767517329656
37.. DiMeglio D.P.,Mattes R.D.. Liquid versus solid carbohydrate: Effects on food intake and body weightInt. J. Obes. Relat. Metab. Disord.Year: 20002479480010878689
38.. Tordoff M.G.,Alleva A.M.. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weightAm. J. Clin. Nutr.Year: 1990519639692349932
39.. De Castro J.M.. The effects of the spontaneous ingestion of particular foods or beverages on the meal pattern and overall nutrient intake of humansPhysiol. Behav.Year: 199353113311448346296
40.. Mattes R.D.. Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluidsPhysiol. Behav.Year: 1996591791878848479
41.. Reid M.,Hammersley R.,Hill A.J.,Skidmore P.. Long-term dietary compensation for added sugar: Effects of supplementary sucrose drinks over a 4-week periodBr. J. Nutr.Year: 20079719320317217576
42.. Mattes R.D.,Campbell W.W.. Effects of food form and timing of ingestion on appetite and energy intake in lean young adults and in young adults with obesityJ. Am. Diet. Assoc.Year: 200910943043719248858
43.. Mattes R.D.. Fluid energy-Where’s the problem?J. Am. Diet. Assoc.Year: 2006106195619611712662410.1016/j.jada.2006.10.026
44.. Bergheim I.,Weber S.,Vos M.,Kramer S.,Volynets V.,Kaserouni S.,McClain C.J.,Bischoff S.C.. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxinJ. Hepatol.Year: 20084898399218395289
45.. Jurgens H.,Haass W.,Castaneda T.R.,Schurmann A.,Koebnick C.,Dombrowski F.,Otto B.,Nawrocki A.R.,Scherer P.E.,Spranger J.,et al. Consuming fructose-sweetened beverages increases body adiposity in miceObes. Res.Year: 2005131146115616076983
46.. Go Y.M.,Jones D.P.. Redox compartmentalization in eukaryotic cellsBiochim. Biophys. ActaYear: 200817801273129018267127
47.. Jones D.P.,Liang Y.. Measuring the poise of thiol/disulfide couples in vivoFree Radic. Biol. Med.Year: 200947132913381971575510.1016/j.freeradbiomed.2009.08.021
48.. Jones D.P.,Park Y.,Gletsu-Miller N.,Liang Y.,Yu T.,Accardi C.J.,Ziegler T.R.. Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humansNutritionYear: 20112719920520471805
49.. Nkabyo Y.S.,Gu L.H.,Jones D.P.,Ziegler T.R.. Thiol/disulfide redox status is oxidized in plasma and small intestinal and colonic mucosa of rats with inadequate sulfur amino acid intakeJ. Nutr.Year: 20061361242124816614411
50.. Jonas C.R.,Estivariz C.F.,Jones D.P.,Gu L.H.,Wallace T.M.,Diaz E.E.,Pascal R.R.,Cotsonis G.A.,Ziegler T.R.. Keratinocyte growth factor enhances glutathione redox state in rat intestinal mucosa during nutritional repletionJ. Nutr.Year: 19991291278128410395587
51.. Ishii S.,Iizuka K.,Miller B.C.,Uyeda K.. Carbohydrate response element protein directly promotes lipogenic enzyme gene transcriptionProc. Natl. Acad. Sci. USAYear: 2004101155971560215496471
52.. Jones D.P.,Carlson J.L.,Mody V.C.,Cai J.,Lynn M.J.,Sternberg P.. Redox state of glutathione in human plasmaFree Radic. Biol. Med.Year: 20002862563510719244
53.. Jones D.P.,Carlson J.L.,Samiec P.S.,Sternberg P. Jr.,Mody V.C. Jr.,Reed R.L.,Brown L.A.. Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLCClin. Chim. ActaYear: 1998275175184972107510.1016/S0009-8981(98)00089-8
54.. Johnson J.M.,Strobel F.H.,Reed M.,Pohl J.,Jones D.P.. A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasmaClin. Chim. ActaYear: 2008396434818634771
55.. Halvey P.J.,Watson W.H.,Hansen J.M.,Go Y.M.,Samali A.,Jones D.P.. Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signallingBiochem. J.Year: 200538621521915647005
56.. He M.,Cai J.,Go Y.M.,Johnson J.M.,Martin W.D.,Hansen J.M.,Jones D.P.. Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transitionToxicol. Sci.Year: 2008105445018550601
57.. Chen Y.,Yu M.,Jones D.P.,Greenamyre J.T.,Cai J.. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cellsToxicol. Appl. Pharmacol.Year: 200621625626216797630
58.. Ngo Sock E.T.,Le K.A.,Ith M.,Kreis R.,Boesch C.,Tappy L.. Effects of a short-term overfeeding with fructose or glucose in healthy young malesBr. J. Nutr.Year: 201010393994319930762
59.. Tappy L.,Le K.A.,Tran C.,Paquot N.. Fructose and metabolic diseases: New findings, new questionsNutritionYear: 2010261044104920471804
60.. McDevitt R.M.,Bott S.J.,Harding M.,Coward W.A.,Bluck L.J.,Prentice A.M.. De novo lipogenesis during controlled overfeeding with sucrose or glucose in lean and obese womenAm. J. Clin. Nutr.Year: 20017473774611722954
61.. Stanhope K.L.,Schwarz J.M.,Keim N.L.,Griffen S.C.,Bremer A.A.,Graham J.L.,Hatcher B.,Cox C.L.,Dyachenko A.,Zhang W.,et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humanJ. Clin. Invest.Year: 20091191322133419381015
62.. Tappy L.,Le K.A.. Metabolic effects of fructose and the worldwide increase in obesityPhysiol. Rev.Year: 201090234620086073
63.. Machado M.V.,Ravasco P.,Jesus L.,Marques-Vidal P.,Oliveira C.R.,Proenca T.,Baldeiras I.,Camilo M.E.,Cortez-Pinto H.. Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with dietScand. J. Gastroenterol.Year: 2008439510218938777
64.. Sumida Y.,Nakashima T.,Yoh T.,Furutani M.,Hirohama A.,Kakisaka Y.,Nakajima Y.,Ishikawa H.,Mitsuyoshi H.,Okanoue T.,et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver diseaseJ. Hepatol.Year: 200338323812480557
65.. Ristow M.,Zarse K.. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis)Exp. Gerontol.Year: 20104541041820350594


[Figure ID: nutrients-03-00987-f001]
Figure 1 

Oil Red O staining of frozen liver sections from control, pair-fed and fructose-fed mice. These sections are visualized at 100× magnification. The red staining corresponds to lipids and the blue stain corresponds to nuclei, respectively.

[Figure ID: nutrients-03-00987-f002]
Figure 2 

Plasma methionine concentration as measured by LC-FTMS. The data is expressed as integral ion intensity relative to internal standard. Pair-fed mice had significantly decreasedplasma methionine concentration compared to other groups. Different superscripted letters (a,b) indicate statistically significant differences among respective groups.

[Figure ID: nutrients-03-00987-f003]
Figure 3 

% CySS in plasma and liver. CySS was measured as percent of total Cys pool (Cys, CySS and Cys-GSH). Different letters (a,b) indicate statistically significant differences among respective groups. In the pair-fed group, plasma % Cyss was significantly increased while hepatic % Cyss was decreased, indicating oxidation of plasma but not liver.

[Figure ID: nutrients-03-00987-f004]
Figure 4 

Cys/CySS redox potential (EhCySS) in plasma and liver. EhCySS is calculated using Nernst equation and expressed in mV. Different letters (a,b) indicate statistically significant difference among respective groups. In the pair fed group, the EhCySS was oxidized in plasma, while reduced in liver compared to other groups, indicating differential plasma but not hepatic oxidative stress.

[Figure ID: nutrients-03-00987-f005]
Figure 5 

Results of thiobarbituric acid reactive substances (TBARS) assays shows that fructose and glucose feeding do not result in significant increases in hepatic lipid peroxidation. Data was analyzed via one-way ANOVA (p = 0.417).

[Figure ID: nutrients-03-00987-f006]
Figure 6 

(a) Western blots of mitochondrial (Trx2) and cytoplasmic (Prx2) redox proteins in the liver in different study groups. Equal amounts of protein were loaded (20 µg) in each well as indicated by similar β-actin abundance. Similar abundance of COX-IV (mitochondrial control) indicated equal loading of mitochondrial protein. Similar Prx2 abundance signifies no oxidative stress in cytoplasm. Trx2 abundance was decreased in fructose and glucose but increased in pair fed group; (b) When normalized to β-actin, Trx2 abundance decreased in fructose (77%) and glucose (80%) groups while it increased in pair fed (150%) group compared to control (100%). This indicates mitochondrial predisposition to oxidative stress in fructose and glucose groups. Different letters (a,b,c) indicate statistically significant difference among respective groups.

[TableWrap ID: nutrients-03-00987-t001] pii: nutrients-03-00987-t001_Table 1.
Table 1 

Animal weights and dietary intake #.

Parameters Control Fructose Glucose Pair fed p
n = 10 n = 11 n = 10 n = 8
Initial weight (g) 20.1 ± 0.1 a 20 ± 0.3 a 19.9 ± 0.3 a 19.6 ± 0.3 a 0.7
Final weight (g) 25.5 ± 0.3 a 28.1 ± 0.6 b 31.8 ± 0.6 c 17.1 ± 0.2 d <0.001
Solid food intake (gm/day) 3.9 ± 0.2 a 2.4 ± 0.3 b 1.8 ± 0.2 b 2.4 ± 0 b <0.001
Liquid intake (mL/day) 4.8 ± 0.3 a 6.8 ± 0.2 b 9.5 ± 0.2 c 2.1 ± 0.1 d <0.001
Cysteine intake (mg/day) 12.2 ± 0.7 a 7.5 ± 0.9 b 5.7 ± 0.5 b 7.5 ± 0 b <0.001
Methionine intake (mg/day) 26.4 ± 1.5 a 16.3 ± 20 b 12.2 ± 1.2 b 16.3 ± 0 b <0.001
Total caloric intake (kcal/day) 16.0 ± 1.0 a 18.0 ± 1.0 a 19.0 ± 1.0 a 10.0 ± 0 b <0.001

a,b,c,d Different superscripted letters indicate statistically significant (p < 0.05) difference between groups; # Data expressed as mean ± SEM; ANOVA.

[TableWrap ID: nutrients-03-00987-t002] pii: nutrients-03-00987-t002_Table 2.
Table 2 

High Performance Liquid Chromatography data of plasma and liver thiols #.

Antioxidant thiols Control Fructose Glucose Pair fed p
n = 10 n = 11 n = 10 n = 8
    Cys (µM) 18.2 ± 2.0 a 17.1 ± 1.0 a 13.2 ± 2.0 a,b 9.1 ± 1.0 b 0.002
    CySS (µM) 40.4 ± 2.0 40.9 ± 3.0 43.7 ± 3.0 33.4 ± 2.0 0.06
    GSH (µM) 26.4 ± 5.0 a 17.2 ± 2.0 20.7 ± 2.0 10.5 ± 2.0 b 0.005
    GSSG (µM) 1.6 ± 0.3 1.3 ± 0.3.0 1.3 ± 0.2 0.7 ± 0.2 0.2
    Total Cys (µM) 114.1 ± 4.0 a 109.4 ± 8.0 a 113.8 ± 3.0 a 81.0 ± 5.0 b 0.004
    Total GSH (µM) 44.8 ± 7.0 a 30.4 ± 3.0 a,b 36.5 ± 4.0 a 17.0 ± 2.0 b 0.001
    Cys (µM) 9.9 ± 2.0 7.2 ± 2.0 17.1 ± 9.0 11.8 ± 2.0 0.5
    CySS (µM) 38.3 ± 7.0 a 34.6 ± 6.0 a,b 41.7 ± 8.0 a 10.9 ± 2.0 b 0.01
    GSH (µM) 1884 ± 149.0 a 1642 ± 137.0 a 1432 ± 177 a,b 982 ± 63 b 0.002
    GSSG (µM) 81.9 ± 13.0 a 52.3 ± 5.0 a,b 40.8 ± 7.0 b 40.5 ± 4.0 b 0.004
    Total Cys (µM) 126.1 ± 15.0 a 104.5 ± 14.0 a,b 116.6 ± 18.0 a 57.4 ± 5.0 b 0.01
    Total GSH (µM) 2087.2 ± 144 a 1774.5 ± 142 a 1530 ± 202 a,b 1087 ± 66 b 0.001

a,b Different superscripted letters indicate statistically significant (p < 0.05) difference between groups; # Data expressed as mean ± SEM; ANOVA.

Article Categories:
  • Article

Keywords: cystine, methionine, thioredoxin, redox potential, mitochondria, obesity.

Previous Document:  Chemopreventive activity of vitamin E in breast cancer: a focus on ?- and ?-tocopherol.
Next Document:  Misreporting of energy intake in the 2007 Australian Children's Survey: identification, characterist...