Document Detail

Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity.
Jump to Full Text
MedLine Citation:
PMID:  22617346     Owner:  NLM     Status:  MEDLINE    
Only 20 patients with deletions of 18q12.2 have been reported in the literature and the associated phenotype includes borderline intellectual disability, behavioral problems, seizures, obesity, and eye manifestations. Here, we report a male patient with a de novo translocation involving chromosomes 12 and 18, with borderline IQ, developmental and behavioral disorders, myopia, obesity, and febrile seizures in childhood. We characterized the rearrangement with Affymetrix SNP 6.0 Array analysis and next-generation mate pair sequencing and found truncation of CELF4 at 18q12.2. This second report of a patient with a neurodevelopmental phenotype and a translocation involving CELF4 supports that CELF4 is responsible for the phenotype associated with deletion of 18q12.2. Our study illustrates the utility of high-resolution genome-wide techniques in identifying neurodevelopmental and neurobehavioral genes, and it adds to the growing evidence, including a transgenic mouse model, that CELF4 is important for human brain development.
Christina Halgren; Iben Bache; Mads Bak; Mikkel Wanting Myatt; Claire Marie Anderson; Karen Brøndum-Nielsen; Niels Tommerup
Related Documents :
1001876 - Marker effects on reversion of t4rii mutants.
11311826 - Examination of y-str mutations in sex chromosomal abnormality in forensic cases.
17000456 - Relationship between mandarin speech reception thresholds and pure-tone thresholds in t...
10356776 - Population distribution of six pcr-amplified loci in madeira archipelago (portugal).
25439486 - Structural focal temporal lobe seizures in a child with lipoproteinosis.
12124406 - Osteoprotegerin deficiency and juvenile paget's disease.
Publication Detail:
Type:  Case Reports; Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-05-23
Journal Detail:
Title:  European journal of human genetics : EJHG     Volume:  20     ISSN:  1476-5438     ISO Abbreviation:  Eur. J. Hum. Genet.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2012-11-15     Completed Date:  2013-04-29     Revised Date:  2013-06-24    
Medline Journal Info:
Nlm Unique ID:  9302235     Medline TA:  Eur J Hum Genet     Country:  England    
Other Details:
Languages:  eng     Pagination:  1315-9     Citation Subset:  IM    
Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Chromosomes, Human, Pair 12 / genetics
Chromosomes, Human, Pair 18 / genetics
Developmental Disabilities / diagnosis,  genetics*
Genetic Association Studies
Myopia / diagnosis,  genetics*
Obesity / diagnosis,  genetics*
RNA-Binding Proteins / genetics*
Seizures / diagnosis,  genetics*
Translocation, Genetic
Reg. No./Substance:
0/CELF4 protein, human; 0/RNA-Binding Proteins

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Eur J Hum Genet
Journal ID (iso-abbrev): Eur. J. Hum. Genet
ISSN: 1018-4813
ISSN: 1476-5438
Publisher: Nature Publishing Group
Article Information
Download PDF
Copyright © 2012 Macmillan Publishers Limited
Received Day: 04 Month: 10 Year: 2011
Revision Received Day: 12 Month: 03 Year: 2012
Accepted Day: 28 Month: 03 Year: 2012
Print publication date: Month: 12 Year: 2012
Electronic publication date: Day: 23 Month: 05 Year: 2012
pmc-release publication date: Day: 1 Month: 12 Year: 2012
Volume: 20 Issue: 12
First Page: 1315 Last Page: 1319
PubMed Id: 22617346
ID: 3499750
Publisher Item Identifier: ejhg201292
DOI: 10.1038/ejhg.2012.92

Haploinsufficiency of CELF4 at 18q12.2 is associated with developmental and behavioral disorders, seizures, eye manifestations, and obesity Alternate Title:Haploinsufficiency of CELF4
Christina Halgren1*
Iben Bache1
Mads Bak1
Mikkel Wanting Myatt2
Claire Marie Anderson1
Karen Brøndum-Nielsen3
Niels Tommerup14
1Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
2Psychiatric Center Glostrup, University of Copenhagen, Glostrup, Denmark
3Kennedy Center, Glostrup, Denmark
4The Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
*Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research, University of Copenhagen, Faculty of Health Sciences, Blegdamsvej 3, 24.4.14, Copenhagen 2200, Denmark. Tel: +45 35327818; Fax: +45 35327845; Email:


Only 20 patients with deletions of 18q12.2 have been reported in the literature.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 In 15 of these patients, the deletions were examined with chromosome analysis, and in the remaining 5 patients molecular investigations identified deletions ranging from 3.2 to 24 Mb in size.9, 10, 12, 13 Common clinical findings included intellectual disability, behavioral disorders, seizures, eye manifestations, obesity, and mild or absent dysmorphic facial features.

In recent years, the use of high-resolution cytogenetic techniques has led to the identification of numerous microdeletion syndromes, where patients with overlapping deletions share clinical features. However, the shared deletions often exceed hundreds of kb or even several Mb, encompassing many genes that hamper the identification of the exact gene(s) underlying the associated phenotype.14 In contrast, truncation of single genes – for example, by small intragenic deletions or by chromosomal translocation or inversion breakpoints – can directly identify a disease-causing gene.15

Here we describe a patient with a prenatally detected de novo translocation involving chromosomes 12 and 18, with febrile seizures in childhood, borderline intelligence, developmental and behavioral disorders, myopia, and obesity. We characterized the rearrangement with SNP array and next-generation sequencing (NGS) and found truncation of CELF4, which has previously been suggested as a neurodevelopmental candidate gene.13 This report illustrates the utility of high-resolution genome-wide techniques in identifying neurodevelopmental genes.

Patients and methods

The patient was identified though a nation-wide study of prenatally detected de novo balanced structural rearrangements. The study was approved by the Danish Scientific Ethics Committee and written informed consent was obtained.

Clinical report

The patient is a 27-year-old male. He is the second child to healthy unrelated parents. Amniocentesis was performed due to advanced maternal age, and a de novo reciprocal translocation involving chromosomes 12 and 18 was diagnosed. The child was born by uncomplicated vaginal delivery at 40 weeks of gestation with a birth weight of 4000 g and birth length 55 cm. The neonatal period was unremarkable. According to the mother, he walked independently at 12 months and there was no delay in language development. At 23 months of age, he was hospitalized due to a series of three febrile seizures. He did not experience recurrent seizures and an electroencephalography was not performed. Owing to minor neurological deficits and difficulties with complex motor tasks, he was diagnosed with minimal brain dysfunction at age 4. At the age of 6, he was diagnosed with hyperkinetic disorder and treated with methylphenidate. He was described as aggressive, with immature and oppositional behavior, having problems with impulsivity and attention shifting, and with a lack of emotional reciprocity. At the age of 13, he was tested with Weschler Intelligence Scale for Children-Revised and found to have an IQ of 71, and he was diagnosed with behavioral disorder, oppositional defiant disorder, and mixed specific developmental disorder (all according to ICD-10).

A physical examination at the age of 25 years revealed no dysmorphic features. His height was 180 cm, weight 110 kg, and head circumference 61 cm. He wore glasses for myopia (estimated −3 diopters). He was obese with a body mass index of 34; according to the mother, obesity has been present since the age of 6–7 years as a result of uninhibited eating behavior. At the age of 27 years, he was screened for major psychiatric disease using the Mini International Diagnostic Interview version 5.0.0 that refers to the DSM-IV. No single diagnosis could be pinpointed. Signs of low IQ and autistic behavior with indications of concrete thinking, impairment of social interaction skills, vagueness in description of others, lack of concentration over time, hyperactivity, and impulsive behavior were seen during the interview. There was significant impairment in occupational and social areas, and a general incapacity for labor market affiliation was manifest. In his youth, he was intensely preoccupied with trains and unable to develop peer relationships. He lives in a group home and his social interactions are limited.

Chromosome and copy number variation analyses

Standard G-banding chromosome analysis was performed on cultured peripheral lymphocytes. Genomic DNA was extracted by conventional methods from peripheral blood, and whole-genome copy number variation (CNV) analysis was performed with the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA). Raw intensity data files were analyzed with the Genotyping Console software (Affymetrix) according to the manufacturer's recommendations. CNVs larger than 1 kb and encompassing more than eight markers were evaluated.

Next-generation paired-end sequencing

Mate pair libraries were prepared using the Mate Pair Library v2 kit (Illumina, San Diego, CA, USA). Briefly, 10 μg DNA was sheared using a nebulizer. Two- to three-kilobase pair fragments were isolated, end-repaired using a mix of natural and biotinylated dNTPs, blunt-end ligated using circularization ligase, and fragmented to 200–400 bp. Biotinylated fragments were isolated and end-repaired and A-overhangs were added to the 3′-ends. Paired-end adapters were ligated to the fragments and the library was amplified by 18 cycles of PCR. Mate pair libraries were subjected to 2 × 36 bases paired-end sequencing on a Genome Analyzer IIx (Illumina), following the manufacturer's protocol. Reads were aligned to a reference genome using Bowtie16 allowing up to two mismatches in the seed region. Reads not aligning uniquely were discarded from further analysis. Paired reads aligning to different chromosomes or with unexpected strand orientation were extracted to identify potential translocation and inversion breakpoints, respectively. Breakpoints were only considered as candidates if they were confirmed by at least six independent paired reads with end-reads mapping within a 6-kb region. Predicted breakpoints were filtered against known in-house variants based on data from 30 individuals with known breakpoints. The translocation breakpoint was confirmed by PCR amplification and Sanger sequencing of the breakpoint-spanning fragments.


A total of 28 986 673 paired reads passed the chastity filter; 13 689 000 paired reads were aligned uniquely and 204 319 were chimeric pairs (end-reads mapping to different chromosomes). We removed non-clustering chimeric pairs leaving a total of 49 chimeric clusters genome-wide that were visually filtered against known variants. The translocation breakpoints were identified at 12q21.31 and 18q12.2, respectively. The breakpoint at chromosome 12 affected no annotated genes whereas the breakpoint at chromosome 18 truncated CELF4. The translocation breakpoint at chromosome 18 was confirmed by PCR amplification and subsequent Sanger sequencing of the breakpoint-spanning fragments that revealed a small sequence of micro homology (AGGA), likely to facilitate the translocation (Supplementary Figure 1). Additionally, NGS revealed an associated inversion at chromosome 18 with breakpoints at 18q12.2 and 18q22.1 that truncated CELF4 and LOC643542. Re-evaluation of the karyotype confirmed the cryptic complex rearrangement, and CNV analysis revealed small de novo deletions (<150 kb in size) corresponding to all four mapped breakpoints (Supplementary Table S1). The revised karyotype was t(12;18)(q21.31;q12.2),inv18(q12.2q22.1).arr12q21.31(83,761,458–83,857,594)x1,18q12.2(34,810,178–34,867,844)x1,18q12.2(35,007,705–35,049,456)x1,18q22.1(65,284,854–65,430,839)x1 dn (hg19). The molecular characterization of the rearrangements is depicted in Figures 1 and 2.


Here, we report a male patient with a translocation involving chromosomes 12q and 18q with borderline IQ, developmental and behavioral disorders, myopia, obesity, and a history of febrile seizures in childhood. Using SNP array and NGS, we identified a cryptic complex rearrangement that truncated 2 RefSeq genes: the protein coding gene CELF4 (also known as BRUNOL4) at 18q12.2 and the non-coding RNA LOC643542 at 18q22.1.

Few of the previously reported patients with deletions of 18q12.2 were characterized sufficiently both clinically and molecularly to allow direct phenotype–genotype comparisons. However, as illustrated in Table 1 there is a considerable phenotypic overlap with our patient. Gilling et al13 reported a patient with childhood autism, severe myopia, and a de novo translocation, t(5;18)(q34;q12). The patient had normal intelligence (IQ 88) and no dysmorphic facial features. The breakpoint region contained a 3.2-Mb deletion encompassing CELF4. McEntagart et al10 described a patient with a de novo del(18)(q11.2q12.2) and a phenotype remarkably like the one reported here consisting of mild intellectual disability (IQ 61), developmental delay, febrile seizures, clumsiness, behavioral difficulties including poor concentration and hyperactivity, distractibility and learning difficulties, and no facial dysmorphism. Tinkle et al11 described a 67-year-old female patient with del(18)(q12.2q21.1). This patient was only examined with conventional karyotyping but the reported phenotype included intellectual disability, a history of fine motor problems, and seizures in childhood. Her behavior was described as impulsive, aggressive, defiant, restless, and labile autistic-like. She was obese and had problems with food seeking obsession.

Although CELF4 was previously found disrupted in patients with overlapping phenotypes,10, 13 no phenotype has been associated with the non-coding RNA LOC643542, thus we find it highly likely that haploinsufficiency of CELF4 causes the described phenotype. CELF4 belongs to a family of evolutionary highly conserved genes.17, 18 The encoded protein binds to RNA and act as a splicing regulator. CELF4 is expressed in various tissues with high expression in both fetal and adult human brain.19 In frog embryos (Xenopus laevis), Celf4 is solely expressed in the nervous system, including the optic veiscles,20 suggesting an important role in both brain and eye development. Furthermore, Celf4 is highly expressed in mouse brain13, 19, 21 and Celf4 insufficient transgenic mice develop convulsive seizures, hyperactivity, and late-onset body weight gain.21, 22 Not only is CELF4 conserved from Drosphila to mouse and human, but the genomic landscape next to CELF4 is also evolutionary conserved23 harboring ultra-conserved elements (UCE),24 and it has been suggested that UCEs may be directly involved in neurodevelopmental disorders.25, 26

We found CELF4 to be disrupted in a patient with borderline IQ, developmental and behavioral disorders, myopia, obesity, and a history of febrile seizures in childhood. The phenotype resembles that of patients with 18q12.2 deletions illustrating that CELF4 haploinsufficiency has a key role in explaining their phenotype. This report, and the finding of Celf4-deficient mice with overlapping traits, for example, seizures, hyperactivity, and obesity,21, 22 adds to the growing evidence that CELF4 is important for the brain development and in the disposition to obesity.


Supplementary Information accompanies the paper on European Journal of Human Genetics website (

We thank the patient and his parents. We thank Elisabeth Larsen, Theresa Wass, Ingrid Kjær, and Hanne Mølgaard for technical assistance. This work was supported by the Danish National Research Foundation, the Lundbeck Foundation, the UNIK program ‘Food, Fitness and Pharma' supported by the Danish Ministry of Science, Technology, and Innovations, and by the Danish Strategic Research Council supporting the Center for Non-coding RNA in Technology and Health.


The authors declare no conflict of interest.

Chudley AE,Bauder F,Ray M,McAlpine PJ,Pena SD,Hamerton JL. Familial mental retardation in a family with an inherited chromosome rearrangementJ Med GenetYear: 1974113533664140909
Wilson MG,Towner JW,Forsman I,Siris E. Syndromes associated with deletion of the long arm of chromosome 18[del(18q)]Am J Med GenetYear: 19793155174474629
Wilson GN,Al Saadi AA. Obesity and abnormal behaviour associated with interstitial deletion of chromosome 18 (q12.2q21.1)J Med GenetYear: 19892662632918529
Schinzel A,Binkert F,Lillington DM,et al. Interstitial deletion of the long arm of chromosome 18, del(18)(q12.2q21.1): a report of three cases of an autosomal deletion with a mild phenotypeJ Med GenetYear: 1991283523551865477
Surh LC,Ledbetter DH,Greenberg F. Interstitial deletion of chromosome 18[del(18)(q11.2q12.2 or q12.2q21.1]Am J Med GenetYear: 19914115171719812
Krasikov N,Thompson K,Sekhon GS. Monosomy 18q12.1—21.1: a recognizable aneuploidy syndrome? Report of a patient and review of the literatureAm J Med GenetYear: 1992435315341376552
Chudley AE,Kovnats S,Ray M. Recognizable behavioral and somatic phenotype in patients with proximal interstitial 18q deletion: report on a new affected child and follow-up on the original reported familial casesAm J Med GenetYear: 1992435355381605245
Poissonnier M,Turleau C,Olivier-Martin M,et al. Interstitial deletion of the proximal region of the long arm of chromosome 18, del(18q12) a distinct clinical entity? A report of two new casesAnn GenetYear: 1992351461511466563
Engelen JJ,Loots WJ,Albrechts JC,et al. Characterization of a de novo unbalanced translocation t(14q18q) using microdissection and fluorescence in situ hybridizationAm J Med GenetYear: 1998754094139482648
McEntagart M,Carey A,Breen C,McQuaid S,Stallings RL,Green AJ,King MD. Molecular characterisation of a proximal chromosome 18q deletionJ Med GenetYear: 20013812812911288715
Tinkle BT,Christianson CA,Schorry EK,Webb T,Hopkin RJ. Long-term survival in a patient with del(18)(q12.2q21.1)Am J Med Genet AYear: 2003119A667012707962
Feenstra I,Vissers LE,Orsel M,et al. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array CGH: an update of the phenotypic mapAm J Med Genet AYear: 2007143A1858186717632778
Gilling M,Lauritsen MB,Moller M,et al. A 3.2 Mb deletion on 18q12 in a patient with childhood autism and high-grade myopiaEur J Hum GenetYear: 20081631231918183041
Vissers LE,de Vries BB,Veltman JA. Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosisJ Med GenetYear: 20104728929719951919
Mikhail FM,Lose EJ,Robin NH,et al. Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disordersAm J Med Genet AYear: 2011155A2386239622031302
Langmead B,Trapnell C,Pop M,Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeGenome BiolYear: 200910R2519261174
Ladd AN,Charlet N,Cooper TA. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicingMol Cell BiolYear: 2001211285129611158314
Good PJ,Chen Q,Warner SJ,Herring DC. A family of human RNA-binding proteins related to the Drosophila Bruno translational regulatorJ Biol ChemYear: 2000275285832859210893231
Meins M,Schlickum S,Wilhelm C,et al. Identification and characterization of murine Brunol4, a new member of the elav/bruno familyCytogenet Genome ResYear: 20029725426012438720
Wu J,Li C,Zhao S,Mao B. Differential expression of the Brunol/CELF family genes during Xenopus laevis early developmentInt J Dev BiolYear: 20105420921419757395
Wagnon JL,Mahaffey CL,Sun W,Yang Y,Chao HT,Frankel WN. Etiology of a genetically complex seizure disorder in Celf4 mutant miceGenes Brain BehavYear: 20111076577721745337
Yang Y,Mahaffey CL,Berube N,Maddatu TP,Cox GA,Frankel WN. Complex seizure disorder caused by Brunol4 deficiency in micePLoS GenetYear: 20073e12417677002
Ovcharenko I,Loots GG,Nobrega MA,Hardison RC,Miller W,Stubbs L. Evolution and functional classification of vertebrate gene desertsGenome ResYear: 20051513714515590943
Bejerano G,Pheasant M,Makunin I,et al. Ultraconserved elements in the human genomeScienceYear: 20043041321132515131266
Martinez F,Monfort S,Rosello M,et al. Enrichment of ultraconserved elements among genomic imbalances causing mental delay and congenital anomaliesBMC Med GenomicsYear: 201035421092253
Poitras L,Yu M,Lesage-Pelletier C,et al. An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrainDevelopmentYear: 20101373089309720702565
Supplementary Material Supplementary Information Click here for additional data file (ejhg201292x1.doc)

Article Categories:
  • Short Report

Keywords: CELF4, 18q12 deletion, developmental disorder, behavioral disorder, obesity, next-generation mate pair sequencing.

Previous Document:  Efficiency of trans-ethnic genome-wide meta-analysis and fine-mapping.
Next Document:  Copy number variation in patients with cervical artery dissection.