Document Detail


Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.
MedLine Citation:
PMID:  25463151     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape.
Authors:
Elsa Youngsteadt; Ryanna C Henderson; Amy M Savage; Andrew F Ernst; Robert R Dunn; Steven D Frank
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-12-2
Journal Detail:
Title:  Global change biology     Volume:  -     ISSN:  1365-2486     ISO Abbreviation:  Glob Chang Biol     Publication Date:  2014 Dec 
Date Detail:
Created Date:  2014-12-2     Completed Date:  -     Revised Date:  2014-12-3    
Medline Journal Info:
Nlm Unique ID:  9888746     Medline TA:  Glob Chang Biol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© 2014 John Wiley & Sons Ltd.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Metastatic Recurrence in a Pancreatic Cancer Patient Derived Orthotopic Xenograft (PDOX) Nude Mouse ...
Next Document:  A dynamic system analysis of dyadic flexibility and stability across the Face-to-Face Still-Face pro...