Document Detail

Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish.
MedLine Citation:
PMID:  17645018     Owner:  NLM     Status:  MEDLINE    
For species that have an open population structure, local population size may be strongly influenced by a combination of propagule supply and post-settlement survival. While it is widely recognized that supply of larvae (or recruits) is variable and that variable recruitment may affect the relative contribution of pre- and post-settlement factors, less effort has been made to quantify how variation in the strength of post-settlement mortality (particularly density-dependent mortality) will affect the importance of processes that determine population size. In this study, I examined the effects of habitat complexity on mortality of blue rockfish (Sebastes mystinus) within nearshore reefs off central California. I first tested whether variation in habitat complexity (measured as three-dimensional complexity of rocky substrate) affected the magnitude of both density-independent and density-dependent mortality. I then used limitation analysis to quantify how variation in habitat complexity alters the relative influence of recruitment, density-independent mortality, and density-dependent mortality in determining local population size. Increased habitat complexity was associated with a reduction in both density-independent and density-dependent mortality. At low levels of habitat complexity, limitation analysis revealed that mortality was strong and recruitment had relatively little influence on population size. However, as habitat complexity increased, recruitment became more important. At the highest levels of habitat complexity, limitation by recruitment was substantial, although density-dependent mortality was ultimately the largest constraint on population size. In high-complexity habitats, population dynamics may strongly reflect variation in recruitment even though fluctuations may be dampened by density-dependent mortality. By affecting both density-independent and density-dependent mortality, variation in habitat complexity may result in qualitative changes in the dynamics of populations. These findings suggest that the relative importance of pre- vs. post-settlement factors may be determined by quantifiable habitat features, rather than ambient recruitment level alone. Because the magnitude of recruitment fluctuations can affect species coexistence and the persistence of populations, habitat-driven changes in population dynamics may have important consequences for both community structure and population viability.
Darren W Johnson
Related Documents :
15704808 - Inequalities in infant mortality: trends by social class, registration status, mother's...
19647498 - Infant mortality decline in armenia: why with uneven rates?
17645018 - Habitat complexity modifies post-settlement mortality and recruitment dynamics of a mar...
1417588 - Economic effects of clinical chicken anemia agent infection on profitable broiler produ...
22701068 - Faulty fetal packing.
10644808 - Immune response to blood transfusion invery-low-birthweight infants.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.    
Journal Detail:
Title:  Ecology     Volume:  88     ISSN:  0012-9658     ISO Abbreviation:  Ecology     Publication Date:  2007 Jul 
Date Detail:
Created Date:  2007-07-24     Completed Date:  2007-09-05     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0043541     Medline TA:  Ecology     Country:  United States    
Other Details:
Languages:  eng     Pagination:  1716-25     Citation Subset:  IM    
Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Fishes / physiology*
Larva / physiology
Population Density
Population Dynamics

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Scale-dependent variation in coral community similarity across sites, islands, and island groups.
Next Document:  Recruitment limitation in Dungeness crab populations is driven by variation in atmospheric forcing.