Document Detail

Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon.
MedLine Citation:
PMID:  22995042     Owner:  NLM     Status:  Publisher    
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamate(in) /γ-aminobutyrate(out) (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.
Daniela De Biase; Eugenia Pennacchietti
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-9-20
Journal Detail:
Title:  Molecular microbiology     Volume:  -     ISSN:  1365-2958     ISO Abbreviation:  Mol. Microbiol.     Publication Date:  2012 Sep 
Date Detail:
Created Date:  2012-9-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8712028     Medline TA:  Mol Microbiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© 2012 Blackwell Publishing Ltd.
Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, 04100, Latina, Italy.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Patients' knowledge and beliefs concerning gout and its treatment: a population based study.
Next Document:  Exploring mediators of accelerometer assessed physical activity in young adolescents in the Health I...