Document Detail

Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1.
Jump to Full Text
MedLine Citation:
PMID:  23291587     Owner:  NLM     Status:  MEDLINE    
Individuals with Behçet's disease suffer from episodic inflammation often affecting the orogenital mucosa, skin and eyes. To discover new susceptibility loci for Behçet's disease, we performed a genome-wide association study (GWAS) of 779,465 SNPs with imputed genotypes in 1,209 Turkish individuals with Behçet's disease and 1,278 controls. We identified new associations at CCR1, STAT4 and KLRC4. Additionally, two SNPs in ERAP1, encoding ERAP1 p.Asp575Asn and p.Arg725Gln alterations, recessively conferred disease risk. These findings were replicated in 1,468 independent Turkish and/or 1,352 Japanese samples (combined meta-analysis P < 2 × 10(-9)). We also found evidence for interaction between HLA-B*51 and ERAP1 (P = 9 × 10(-4)). The CCR1 and STAT4 variants were associated with gene expression differences. Three risk loci shared with ankylosing spondylitis and psoriasis (the MHC class I region, ERAP1 and IL23R and the MHC class I-ERAP1 interaction), as well as two loci shared with inflammatory bowel disease (IL23R and IL10) implicate shared pathogenic pathways in the spondyloarthritides and Behçet's disease.
Yohei Kirino; George Bertsias; Yoshiaki Ishigatsubo; Nobuhisa Mizuki; Ilknur Tugal-Tutkun; Emire Seyahi; Yilmaz Ozyazgan; F Sevgi Sacli; Burak Erer; Hidetoshi Inoko; Zeliha Emrence; Atilla Cakar; Neslihan Abaci; Duran Ustek; Colleen Satorius; Atsuhisa Ueda; Mitsuhiro Takeno; Yoonhee Kim; Geryl M Wood; Michael J Ombrello; Akira Meguro; Ahmet Gül; Elaine F Remmers; Daniel L Kastner
Related Documents :
16894437 - Acne--natural history, facts and myths.
8006427 - Epidemiology of psoriasis: clinical issues.
7462677 - Psoriasiform dermatosis in a rhesus monkey.
24457347 - Advances in coeliac disease.
10523017 - Microsatellite polymorphism of the mhc class i chain-related (mic-a and mic-b) genes ma...
7735737 - Review article: current indications for high resolution computed tomography scanning of...
Publication Detail:
Type:  Journal Article; Meta-Analysis; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't     Date:  2013-01-06
Journal Detail:
Title:  Nature genetics     Volume:  45     ISSN:  1546-1718     ISO Abbreviation:  Nat. Genet.     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2013-01-29     Completed Date:  2013-03-26     Revised Date:  2013-11-03    
Medline Journal Info:
Nlm Unique ID:  9216904     Medline TA:  Nat Genet     Country:  United States    
Other Details:
Languages:  eng     Pagination:  202-7     Citation Subset:  IM    
Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Aminopeptidases / genetics*
Analysis of Variance
Behcet Syndrome / genetics*
Epistasis, Genetic / genetics*
Gene Expression Regulation / genetics*
Genetic Predisposition to Disease / genetics*
Genome-Wide Association Study
HLA-B51 Antigen / genetics*
NK Cell Lectin-Like Receptor Subfamily C / genetics
Polymorphism, Single Nucleotide / genetics
Receptors, CCR1 / genetics
STAT4 Transcription Factor / genetics
Statistics, Nonparametric
Grant Support
Reg. No./Substance:
0/CCR1 protein, human; 0/HLA-B51 Antigen; 0/KLRC4 protein, human; 0/NK Cell Lectin-Like Receptor Subfamily C; 0/Receptors, CCR1; 0/STAT4 Transcription Factor; 0/STAT4 protein, human; EC 3.4.11.-/Aminopeptidases; EC 3.4.11.-/ERAP1 protein, human

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-journal-id): 9216904
Journal ID (pubmed-jr-id): 2419
Journal ID (nlm-ta): Nat Genet
Journal ID (iso-abbrev): Nat. Genet.
ISSN: 1061-4036
ISSN: 1546-1718
Article Information
Download PDF

nihms-submitted publication date: Day: 15 Month: 7 Year: 2013
Electronic publication date: Day: 06 Month: 1 Year: 2013
Print publication date: Month: 2 Year: 2013
pmc-release publication date: Day: 29 Month: 10 Year: 2013
Volume: 45 Issue: 2
E-location ID: 10.1038/ng.2520
PubMed Id: 23291587
ID: 3810947
DOI: 10.1038/ng.2520
ID: NIHMS474675

Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1
Yohei Kirino12*
George Bertsias13*
Yoshiaki Ishigatsubo2
Nobuhisa Mizuki4
Ilknur Tugal-Tutkun5
Emire Seyahi6
Yilmaz Ozyazgan7
F. Sevgi Sacli6
Burak Erer8
Hidetoshi Inoko9
Zeliha Emrence10
Atilla Cakar10
Neslihan Abaci10
Duran Ustek10
Colleen Satorius1
Atsuhisa Ueda2
Mitsuhiro Takeno2
Yoonhee Kim11
Geryl M. Wood1
Michael J. Ombrello1
Akira Meguro4
Ahmet Gül8 Email:
Elaine F. Remmers1 Email:
Daniel L. Kastner1 Email:
1Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
2Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
3Rheumatology, Clinical Immunology, and Allergy, Faculty of Medicine, University of Crete, Iraklion, Greece
4Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
5Istanbul Faculty of Medicine, Department of Ophthalmology, Istanbul University, Istanbul, Turkey
6Cerrahpaşa Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Istanbul University, Istanbul, Turkey
7Cerrahpaşa Faculty of Medicine, Department of Ophthalmology, Istanbul University, Istanbul, Turkey
8Istanbul Faculty of Medicine, Department of Internal Medicine, Division of Rheumatology, Istanbul University, Istanbul, Turkey
9Department of Molecular Life Science, Division of Molecular Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
10Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
11Genometrics Section, Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
*These authors made equal contributions to the study.
These authors jointly directed this work.

Behçet's disease (BD) is a form of vasculitis that manifests with orogenital ulcers, uveitis, skin inflammation, arthritis, enterocolitis, and inflammation in other organs1,2. BD is relatively common in Turkey, Japan, and modern-day countries that fall on Marco Polo's ancient Silk Routes, and is an important cause of vision loss in these countries2. Genetic risk factors contribute to disease-susceptibility. HLA-B*51 is the most strongly associated risk factor for BD, confirmed in multiple populations3-5. Although its association was established more than three decades ago, the role of HLA-B*51 in disease pathogenesis remains elusive5. In addition to HLA-B*51, two recent independent GWASs identified variants in regions encompassing MHC-I, IL10, and IL23R associated with BD in both the Turkish and Japanese populations6,7. However, the combined effects of these genetic factors do not fully explain the observed disease heritability.

The pathobiology of BD is also largely unknown. In 1974, based on clinical features, Moll et al. proposed the concept of “seronegative spondylarthritides”, and included BD along with ankylosing spondylitis (AS), psoriatic arthritis, reactive arthritis, and inflammatory bowel disease (IBD)8. Since then, the inclusion of BD within the spondyloarthropathy (SpA) category has been debated as BD patients rarely exhibit sacroiliitis, and BD is associated with HLA-B*51 rather than HLA-B*279-11. On the other hand, overlapping extra-articular clinical manifestations (inflammation in the eyes, skin, and intestine), genetic associations at MHC-I and IL23R6,7,12-14, and the effectiveness of tumor necrosis factor (TNF)-α blockade15,16, suggest shared pathogenesis between BD and SpA. Furthermore, IL10 and IL23R variants were found associated with both BD and IBD (Crohn's disease and ulcerative colitis), implicating common inflammatory pathways between BD and these other members of the SpA group.17,18

To identify novel genetic variants associated with BD, we imputed genotypes of autosomal SNPs in our GWAS collection of 1,209 cases and 1,278 controls using the previously genotyped SNPs6 and a reference panel of 96 Turkish controls genotyped for 814,474 SNPs (Online Methods). After quality control filtering, 779,465 autosomal imputed SNPs were subjected to statistical analysis by basic allele test using the best-guess imputed genotypes. In addition to the previously reported MHC-I, IL10, and IL23R discovery signals, we observed a strong signal in the CCR1 (C-C chemokine receptor type 1)-CCR3 locus, with a p-value that exceeded genome-wide significance, p<5 × 10-8 (Figure 1, rs7616215, p=1.29 × 10−8). Markers with p<3 × 10−5 are listed in Supplementary Table 1.

We selected 21 SNPs from the novel loci identified by imputation and one SNP from the previously reported Japanese GWAS7 for genotyping in a Turkish replication collection, comprising newly collected 838 Turkish cases and 630 controls (Supplementary Table 2). Four promising loci, STAT4 (signal transducer and activator of transcription 4), KLRC4 (killer cell lectin-like receptor subfamily C, member 4), the CCR1-CCR3 locus, and IL12A (interleukin-12 alpha chain) were then selected for validation of the imputed data (by direct genotyping) and fine-mapping studies in the original Turkish GWAS samples. As shown in Figure 2a-c, we found the strongest signals at rs7616215 3′ of CCR1, at rs7574070 in intron 3 of STAT4, and at nonsynonymous SNPs rs2617170 and rs1841958, encoding KLRC4 p.Asn104Ser and p.Ile129Ser. In a meta-analysis, we combined the Turkish GWAS and replication data, and if polymorphic, the Japanese replication data (from the reported GWAS collection with 612 cases and 740 controls7) using Cochran-Mantel-Haenszel tests (Table 1 and Figure 2). Three loci (CCR1-CCR3, STAT4, and KLRK1-KLRC1) were associated with BD at genome-wide significance (p=1.34 × 10−9 to 4.30 × 10−13). Additionally, the IL12A locus exhibited suggestive association (p=6 × 10−7). Of the 612 Japanese cases ascertained using the Japanese diagnostic criteria7, 496 also fulfilled the International Study Group Criteria19. An analysis including only cases that met the International Study Group criteria revealed genome-wide significance for the same three loci despite the reduced numbers (Supplementary Table 3).

In an attempt to reduce genetic heterogeneity, we performed genome-wide association tests in the subset of GWAS discovery patients with uveitis (435 cases, 1,278 controls)6. Neither the basic allelic test nor the dominant model test showed associations outside of the MHC. However, when we applied a recessive model, one SNP in the ERAP1-ERAP2 locus exhibited association with a p-value close to genome-wide significance level (rs2927615, p=1.02 × 10−7). We performed fine-mapping of this region in the uveitis subset of the GWAS discovery collection and identified rs10050860 and rs17482078, encoding ERAP1 p.Asp575Asn and p.Arg725Gln, which conferred risk for BD with uveitis in a recessive model (Figure 2d). A meta-analysis of p.Arg725Gln combining the Turkish discovery collection and the Turkish replication collection (with 370 BD cases with uveitis and 630 controls) exceeded the three model threshold for genome-wide significance and revealed a large effect size of the homozygous p.Arg725Gln genotype on BD with uveitis (odds ratio=4.56, p=4.73 × 10−11, Table 1 and Figure 2d).

Because a recessive model was required to detect the ERAP1 association in BD patients with uveitis, we tested whether the recessive model would reveal the ERAP1 p.Arg725Gln association with BD susceptibility in the combined uveitis and non-uveitis samples. A meta-analysis of the GWAS and replication collections found significant association of the homozygous p.Arg725Gln genotype with BD susceptibility (p=4.35 × 10−8, Supplementary Table 4). The minor allele frequency of rs2927615 (a variant in strong linkage disequilibrium [LD] with p.Arg725Gln) was too low in the Japanese population (1.8% in BD cases, 2.0% in controls) to evaluate recessive effects. Furthermore, none of the Japanese GWAS SNPs from the regions encompassing ERAP1 or IL12A (rs17810546 was not polymorphic in the Japanese population) were associated with BD (Supplementary Table 5).

ERAP1 is an endoplasmic reticulum expressed amino peptidase that functions to trim peptides for loading onto MHC Class I20. Previous GWASs have established associations of ERAP1 variants in psoriasis21, 22 and AS12. ERAP1 p.Asp575Asn and p.Arg725Gln, which are in strong LD, confer protection against these diseases through reduced peptide trimming and antigen presentation by MHC-Class I12,22-24. Of note, recent reports have shown that these ERAP1 variants confer protection preferentially in HLA-B*27 positive individuals in AS23 and HLA-C*06 positive individuals in psoriasis22, suggesting that peptide processing and binding/presentation mechanisms contribute to the pathogenesis of these diseases.

We therefore tested for an interaction between HLA-B*51 and ERAP1 in BD. The ERAP1 variants preferentially conferred risk for BD in HLA-B*51 positive individuals (p-value for interaction=0.0009 from a logistic likelihood ratio test comparing the full model including a multiplicative interaction term with the reduced model without interaction term) in the combined Turkish GWAS and replication (including uveitis and non-uveitis) samples (Figure 3). Furthermore, ERAP1 p.Arg725Gln homozygosity was associated with an odds ratio for BD of 3.78 [95% CI 1.94-7.35] in the HLA-B*51 positive individuals versus an odds ratio of 1.48 [95% CI 0.78-2.80] in the HLA-B*51 negative individuals. This finding indicates that the disease-associated peptidase variant contributes to disease susceptibility through an interaction with the HLA-B*51 protein.

Homozygosity for the ERAP1 variants is associated with increased risk for BD, but decreased risk for AS23 and psoriasis22. The difference between risk and protection among these three diseases may depend on the variability and binding affinities of peptides loaded onto the respective MHC Class I molecules, which can affect their stability and function. Indeed, repertoires of MHC-bound peptides are altered in ERAP1 deficient mice25. ERAP1 p.Arg725Gln-related alterations might affect the repertoire of peptides that bind to HLA-B*51, which is known for its promiscuous peptide binding features5,26. The recessive nature of the ERAP1 effect in BD (one wild type copy in heterozygotes is sufficient to obscure the risk effect of the mutant allele) suggests that homozygotes fail to produce one or more disease-protective peptides.

The KLRC4 BD-associated SNP (Table 1) is within a haplotype block containing five natural killer (NK) cell receptor genes (KLRK1, KLRC1-4) (Figure 2c). Two non-synonymous variants in KLRC4, rs1841958 and rs2617170, encoding KLRC4 p.Ile29Ser and Asn104Ser, are found on the BD-protective haplotype of this LD block. This haplotype has been associated with reduced peripheral blood leukocyte cytotoxicity and increased incidence of cancer27. Conditional logistic regression analysis, conditioning on the KLRC4 Asn104Ser variant, showed no additional independent association signals within this LD block (Supplementary Figure 1a). KLRC4, also called NKG2F, encodes a c-type lectin receptor whose function is largely unknown. A possible clue to its function may be found in a related family member, NKG2D, encoded by KLRK1 and also located within the disease-associated haplotype block. NKG2D is expressed on NK cells and γδ T cells, and can act as a co-stimulatory molecule for CD4+ and CD8+ T cells28,29. Interestingly, a ligand of the NKG2D receptor is MICA (the MHC Class I chain-related protein A)28. The MICA gene is located within the MHC region and SNPs within the MICA locus are in linkage disequilibrium with HLA-B*516. The importance of NK receptors in BD pathogenesis is also supported by the observation that the strongest linkage peak in Turkish familial BD (LOD score of 3.94) is found at chr12p12-13, which includes the KLRK region locus30.

The disease-associated variants in the 3′ flanking region of CCR1-CCR3 (rs7616215) and within the third intron of STAT4 (rs7574070) are noncoding and are not in strong LD with any coding variants (Figure 2a-b). The CCR1-CCR3 locus contains a cluster of chemokine receptor genes within the LD block. Logistic regression analysis conditioning on covariate rs7616215 revealed only a single association signal in the region (Supplementary Figure 1b). ENCODE data indicated that rs7616215 and rs7574070 are located within DNase I hypersensitivity and histone 3 lysine 4 methylation sites, suggesting effects on transcription.

Indeed, CCR1 mRNA expression was higher in primary human monocytes from healthy donors with the disease protective C allele (Figure 4a, Zeller et al.31, p = 9.5 × 10−6, and 4b, p = 0.017). The BD-associated variant was not, however, found associated with expression of the nearby gene CCR3.31 Concordant with expression data, migration of monocytes in response to a gradient of the CCR1 ligand MIP1-α was higher in C allele individuals (Figure 4c, p = 0.015). Comparison between CCR1 mRNA expression level and migration index within matched samples (n=34) showed significant correlation (Spearman's ρ = 0.46, p= 0.007, Figure 4d). Thus, CCR1 expression and monocyte chemotaxis were reduced in individuals with the disease risk allele suggesting that impaired clearance of pathogens may contribute to BD pathogenesis. Future experiments will be required to further elucidate the importance of the observed differences.

STAT4 mRNA expression was higher in individuals with the risk allele A (Figure 4e and 4f). The BD-associated variant rs7574070 (and its surrogate rs7572482) is in poor LD with the previously reported autoimmune disease-associated STAT4 variant, rs757486532; in fact it is located two LD blocks away, suggesting the associations are independent, although both variants are located within the large third intron of STAT4 (Figure 2b). Both variants are associated with increased expression of STAT4 (ref 33 and data presented here), but the genetically distinct disease-associations suggest different STAT4 regulatory mechanisms in BD compared with rheumatoid arthritis, systemic lupus erythematosus, and other autoimmune diseases. Smaller effect sizes observed for the associations of the CCR1 and STAT4 variants in the Japanese replication (Table 1) could be explained by “the winner's curse”34.

In conclusion, this study adds substantially to the understanding of genetic factors that contribute to BD susceptibility (the new loci are CCR1-CCR3, STAT4, KLRK1-KLRC4, and ERAP1). Furthermore, the results support an emerging concept delineating common pathogenic mechanisms for BD and the SpA. BD, AS, and psoriasis are inflammatory disorders affecting the skin, eyes, and joints, with significant MHC Class I associations (B*51 for BD, B*27 for AS, and C*06 for psoriasis). Recent genetic studies implicate variants of IL23R, encoding an upstream molecule in Th17 activation, in susceptibility to all three disorders. The present work adds ERAP1 to the list of shared genetic factors and furthermore, interactions between MHC Class I and ERAP1 are also found in all three of these diseases. ERAP1 trims peptides for proper loading onto Class I antigens, thus suggesting that peptide-MHC Class I interactions contribute to all three of these diseases. These data suggest the existence of shared inflammatory pathways among these diseases leading to the possibility of common therapeutic strategies, while raising questions about the specific disease characteristics, which may be related to their different MHC Class I associations.

Online methods

1,215 Turkish Behçet's disease (BD) cases and 1,278 genetically matched controls used in previous GWAS were studied6. Individuals who also met the Tel-Hashomer clinical criteria for the diagnosis of familial Mediterranean fever (FMF)35 were excluded (n=6). For replication, an additional similarly collected 838 Turkish cases (none fulfilled FMF criteria) and 630 controls, and 612 Japanese BD cases and 740 control samples enrolled in the previous GWAS7 were included. Turkish BD patients fulfilled the International Study Group diagnostic criteria for Behçet's disease19. All Japanese BD patients fulfilled the Japanese BD diagnostic criteria7 and 496 of them also fulfilled the International Study Group criteria. All study participants provided written informed consent, and the study was approved by the Ethics Committees of each investigative institution.

Genotype imputation

We imputed genotypes of 1,209 BD cases and 1,278 controls using MACH v1.0. For a reference panel, we used 96 Turkish healthy controls who participated in the previous BD GWAS using the HumanHap370CNV chip (Illumina) and additionally genotyped on the Human OMNI 1M chip (Illumina, San Diego, CA). For quality control, we excluded SNPs from the reference panel if they had a minor allele frequency less than 5%, deviated from Hardy–Weinberg equilibrium (P<0.0001), or had a call rate below 95%, yielding 814,474 SNPs for the imputation. Quality scores for the imputation are shown in Supplementary Table 6. SNPs with Rsq<0.3 were excluded from the association analysis. A total of 779,465 imputed SNPs were included in the genome-wide association analysis.

Validation and fine-mapping

The Turkish GWAS imputation provided the discovery data. Twenty-two SNPs from the novel genetic loci were selected for evaluation in the Turkish replication samples. Three of these SNPs with P < 0.001 and one SNP from the phenotypic subset analysis identified four regions for validation and fine-mapping by i-PLEX assays (TOF-MS, Sequenom, San Diego, CA) using the original Turkish GWAS samples6. The IL12A locus with two SNPs with P < 0.05 in the replication samples was also investigated, but failed to reach genome-wide significance. For variants that failed TOF-MS design or reaction, TaqMan genotyping was performed (Applied Biosystems, Foster City, CA). Genotyping was performed in an unbiased fashion by masking the phenotype of the samples. For the fine-mapping, we used the Tagger SNP selection tool from HapMap to select SNPs to augment the coverage of the GWAS SNPs with the intent to obtain 100% coverage of the HapMap Phase III SNPs with greater than 5% minor allele frequency in the CEU HapMap population with pairwise r2 > 0.8. Although already tagged, additional SNPs with r2 > 0.8 with the most significantly associated SNP of the region were also included. Genotyping of the same samples used for the Turkish GWAS discovery collection was performed6. After quality control, the resulting coverage for the CCR1 locus (chr3:45441901-46908964, hg18) was 92%, the STAT4 locus (chr2:191602386-191769025) was 84%, the KLRK1-KLRC1 locus (chr12:10329925-10557292) was 92%, and the ERAP1-2 locus (chr5:96026703-96305246) was 94%. The most significantly associated marker from each region was used for the replications. The Japanese replication collection genotypes were from the Japanese GWAS7. The Turkish replication collection samples were genotyped by TOF-MS or TaqMan assay.

mRNA expression data and migration assay

CCR1 mRNA expression data were extracted from the report by Zeller and colleagues, which includes genome-wide SNP data along with mRNA expression array data from monocytes of n = 1490 European ancestry individuals31. SNP rs7616215 showed association with CCR1 mRNA expression (p=9.54×10−6), whereas CCR3 data were not reported, indicating that the association of rs7616215 with CCR3 is less significant (p>5×10−5). STAT4 mRNA expression data in lymphoblastoid samples were obtained from Gene Expression Omnibus (GEO) datasets36, 37. Primary human monocytes from unrelated healthy volunteers were isolated from peripheral blood mononuclear cells by MACS Human Monocyte Isolation Kit (Miltenyi Biotec, Gladbach, Germany). RNA was isolated from PBMCs by RNeasy kit (Qiagen, Valencia, CA) and preserved at −80 C° until used. cDNAs were prepared from DNase I (Invitrogen, Carlsbad, CA)-pretreated-RNA using SuperScript II according to manufacturer's protocol (Invitrogen). Q-PCR gene expression assay for human CCR1 (Hs00174298_m1) was purchased from Applied Biosystems (Foster City, CA). Human GAPDH (4310884E) served as an internal control. Multiplex PCR (GAPDH with CCR1) was performed in triplicate or quadruplicate as in the manufacturer's protocol (Applied Biosystems). The ΔΔCT method was used for the analysis (n=93).

A monocyte migration assay was performed with 24-well Transwell 5 μm polycarbonate membrane chambers (Costar, Corning, NY). 1% bovine serum albumin RPMI1640 medium was used for incubation of the cells. 5×104 cells were seeded in the upper chamber and the CCR1 chemokine MIP1-α (0 or 10ng/ml) (R&D, Minneapolis, MN) was placed in lower chamber. After incubation for 2 hours, cells that migrated into the membrane were fixed and stained by DiffQuik (Siemens, Newark, DE). Cells were counted in 5 high power fields on membranes from each of two duplicate wells. The relative change in cell migration in response to the chemokine was determined by dividing the migrated cell count obtained with MIP1-α by the cell count obtained from the same sample without MIP1-α (n=61).

Statistical analysis

Genome-wide SNP association tests were performed based on allelic tests by comparing the allele frequencies between BD cases and controls, using Golden Helix SVS 7.5.2 software (Golden Helix, Bozeman, MT). P<5×10−8 was considered genome-wide significance. For the uveitis subset analysis, as well as the basic allelic test, we applied dominant and recessive genetic model tests and therefore employed 1.67×10−8 for genome-wide significance. Conditional analyses were performed by fitting the logistic regression model with SNPs rs2617170 (for KLRK1-KLRC1) or rs7616215 (for CCR1-CCR3) as covariates. For meta-analysis, Cochran-Mantel-Haenszel tests were performed. To test for the interactive effects, we fit the log likelihood of the full model, including additive terms of the main effects and a multiplicative term of the interaction effect, versus a reduced model of the additive terms of the main effects only. P value was calculated by likelihood ratio tests between full and reduced models based on 1 degree of freedom Chi-square test statistics. For comparisons in expression and chemotaxis data, the Kruskal-Wallis rank sum test as a non-parametric version of one-way ANOVA and Spearman's rank correlation test were performed.

Supplementary Material 1


FN3Author Contributions: Study design: Y.K., G.B., A.G., M.J.O., E.F.R., D.L.K. Analysis: Y.K., G.B., Y.Kim, A.M., A.G., E.F.R., D.L.K. Sample procurement and data generation: Y.K., G.B., Y.I., N.M., I.T., E.S., Y.O., F.S.S., B.E., H.I., Z. E., A.C., N.A., D.U., C.S., A.U., M.T., Y.Kim, G.M.W., M.J.O., A.M, A.G., E.F.R., D.L.K. Writing: Y.K., G.B., Y.Kim, M.J.O., A.G., E.F.R., D.L.K. All the authors read and approved the final version of the manuscript.

FN4Competing Financial Interests: The authors declare no competing financial interests.

FN5URLs: International HapMap project, ENCODE, ENCODE/MACH1.0,, GEO, (accession numbers: GSE6536 and GSE24277)

This research was supported by the Intramural Research Programs of the National Human Genome Research Institute and the National Institute of Arthritis and Musculoskeletal and Skin Diseases, and the Center for Human Immunology, Autoimmunity and Inflammation, of the National Institutes of Health, USA, and by the Istanbul University Research Fund, and Research on Specific Disease of the Health Science Research Grants from the Japanese Ministry of Health, Labor, and Welfare, and the Japan Rheumatism Foundation. We thank Dr. Alexander Wilson (Genometrics Section, Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA) for helpful comments on this manuscript.

1. Sakane T,Takeno M,Suzuki N,Inaba G. Behçet's diseaseN Engl J Med341128491Year: 199910528040
2. Yazici H,Fresko I,Yurdakul S. Behçet's syndrome: disease manifestations, management, and advances in treatmentNat Clin Pract Rheumatol314855Year: 200717334337
3. Ono S,Aoki K,Sugiura S,Nakayama E,Itakura K. Letter: HL-A5 and Behçet's diseaseLancet213834Year: 19734128069
4. de Menthon M,Lavalley MP,Maldini C,Guillevin L,Mahr A. HLA-B51/B5 and the risk of Behçet's disease: a systematic review and meta-analysis of case-control genetic association studiesArthritis Rheum61128796Year: 200919790126
5. Gül A,Ohno S. HLA-B*51 and Behçet DiseaseOcul Immunol Inflamm203743Year: 201222188278
6. Remmers EF,et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet's diseaseNat Genet42698702Year: 201020622878
7. Mizuki N,et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet's disease susceptibility lociNat Genet427036Year: 201020622879
8. Moll JM,Haslock I,Macrae IF,Wright V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter's disease, the intestinal arthropathies, and Behçet's syndromeMedicine (Baltimore)5334364Year: 19744604133
9. Chang HK,et al. The comparison between Behçet's disease and spondyloarthritides: does Behçet's disease belong to the spondyloarthropathy complex?J Korean Med Sci175249Year: 200212172050
10. Yazici H,Tuzlaci M,Yurdakul S. A controlled survey of sacroiliitis in Behçet's diseaseAnn Rheum Dis405589Year: 19817332375
11. Olivieri I,Salvarani C,Cantini F. Is Behçet's disease part of the spondyloarthritis complex?Journal Rheumatol2418702Year: 1997
12. Consortium WTCC,et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variantsNat Genet39132937Year: 200717952073
13. Duerr RH,et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease geneScience31414613Year: 200617068223
14. Nair RP,et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathwaysNat Genet41199204Year: 200919169254
15. Ohno S,et al. Efficacy, safety, and pharmacokinetics of multiple administration of infliximab in Behçet's disease with refractory uveoretinitisJ Rheumatol3113628Year: 200415229958
16. Dougados M,Baeten D. SpondyloarthritisLancet37721273721684383
17. Franke A,et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility lociNat Genetics42111825Year: 201021102463
18. Anderson CA,et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47Nat Genetics4324652Year: 201121297633
19. Criteria for diagnosis of Behçet's disease. International Study Group for Behcet's DiseaseLancet335107880Year: 19901970380
20. Haroon N,Inman RD. Endoplasmic reticulum aminopeptidases: Biology and pathogenic potentialNat Rev Rheumatol6461720531381
21. Sun LD,et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese populationNat Genet421005920953187
22. Strange A,et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1Nat Genet429859020953190
23. Evans DM,et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibilityNat Genet43761721743469
24. Kochan G,et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimmingProc Natl Acad Sci U S A108774550Year: 201121508329
25. York IA,Brehm MA,Zendzian S,Towne CF,Rock KL. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominanceProc Natl Acad Sci U S A10392027Year: 200616754858
26. Gebreselassie D,Spiegel H,Vukmanovic S. Sampling of major histocompatibility complex class I-associated peptidome suggests relatively looser global association of HLA-B*5101 with peptidesHum Immunol67894906Year: 200617145369
27. Hayashi T,et al. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillanceCancer Res6656370Year: 200616397273
28. Bauer S,et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICAScience2857279Year: 199910426993
29. Raulet DH. Roles of the NKG2D immunoreceptor and its ligandsNat Rev Immunol378190Year: 200314523385
30. Karasneh J,Gül A,Ollier WE,Silman AJ,Worthington J. Whole-genome screening for susceptibility genes in multicase families with Behçet's diseaseArthritis Rheum52183642Year: 200515934084
31. Zeller T,et al. Genetics and beyond--the transcriptome of human monocytes and disease susceptibilityPLoS One5e10693Year: 201020502693
32. Remmers EF,et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosusN Engl J Med35797786Year: 200717804842
33. Abelson AK,et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase riskAnn Rheum Dis68174653Year: 200919019891
34. Zollner S,Pritchard JK. Overcoming the winner's curse: estimating penetrance parameters from case-control dataAm J Hum Genet8060515Year: 200717357068
35. Livneh A,et al. Criteria for the diagnosis of familial Mediterranean feverArthritis Rheum40187985Year: 19979336425
36. Stranger BE,et al. Relative impact of nucleotide and copy number variation on gene expression phenotypesScience31584853Year: 200717289997
37. Niu N,et al. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell linesGenome Res20148292Year: 201020923822

Article Categories:
  • Article

Previous Document:  Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of M...
Next Document:  A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired...