Document Detail

Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean.
Jump to Full Text
MedLine Citation:
PMID:  22737229     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
Hepatitis B virus (HBV) infection can lead to serious liver diseases, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC); however, about 85-90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS) and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the HLA-DPA1 and HLA-DPB1 genes with P(meta) = 1.89×10⁻¹² for rs3077 and P(meta) = 9.69×10⁻¹⁰ for rs9277542. We also found that the HLA-DPA1 and HLA-DPB1 genes were significantly associated with protective effects against chronic hepatitis B (CHB) in Japanese, Korean and other Asian populations, including Chinese and Thai individuals (P(meta) = 4.40×10⁻¹⁹ for rs3077 and P(meta) = 1.28×10⁻¹⁵ for rs9277542). These results suggest that the associations between the HLA-DP locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule.
Authors:
Nao Nishida; Hiromi Sawai; Kentaro Matsuura; Masaya Sugiyama; Sang Hoon Ahn; Jun Yong Park; Shuhei Hige; Jong-Hon Kang; Kazuyuki Suzuki; Masayuki Kurosaki; Yasuhiro Asahina; Satoshi Mochida; Masaaki Watanabe; Eiji Tanaka; Masao Honda; Shuichi Kaneko; Etsuro Orito; Yoshito Itoh; Eiji Mita; Akihiro Tamori; Yoshikazu Murawaki; Yoichi Hiasa; Isao Sakaida; Masaaki Korenaga; Keisuke Hino; Tatsuya Ide; Minae Kawashima; Yoriko Mawatari; Megumi Sageshima; Yuko Ogasawara; Asako Koike; Namiki Izumi; Kwang-Hyub Han; Yasuhito Tanaka; Katsushi Tokunaga; Masashi Mizokami
Related Documents :
10655409 - Hepatitis c virus quantitation: optimization of strategies for detecting low-level vire...
22750749 - Assessing long-term treatment efficacy in chronic hepatitis b and c: between evidence a...
22872679 - Sphingopeptides: dihydrosphingosine-based fusion inhibitors against wild-type and enfuv...
22506919 - What factors influence obstetrician-gynecologists to follow recommended hiv screening a...
22591069 - Hiv risk among australian men travelling overseas: networks and context matter.
22772819 - Longitudinal study of emerging mental health concerns in youth perinatally infected wit...
14766869 - Development of a serum-based taqman real-time pcr assay for diagnosis of invasive asper...
24039279 - A qualitative study of barriers to the utilization of hiv testing services among rural ...
11827499 - Evaluation and management of hiv-infected women.
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't     Date:  2012-06-21
Journal Detail:
Title:  PloS one     Volume:  7     ISSN:  1932-6203     ISO Abbreviation:  PLoS ONE     Publication Date:  2012  
Date Detail:
Created Date:  2012-06-27     Completed Date:  2012-12-14     Revised Date:  2013-07-12    
Medline Journal Info:
Nlm Unique ID:  101285081     Medline TA:  PLoS One     Country:  United States    
Other Details:
Languages:  eng     Pagination:  e39175     Citation Subset:  IM    
Affiliation:
Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan. nishida-75@umin.ac.jp
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Female
Genome-Wide Association Study*
Genotype
HLA-DP Antigens / genetics,  immunology*
HLA-DP alpha-Chains / genetics
HLA-DP beta-Chains / genetics
Haplotypes
Hepatitis B / genetics
Hepatitis B virus / genetics*
Hepatitis B, Chronic / immunology,  prevention & control*,  virology*
Humans
Japan
Korea
Linkage Disequilibrium
Male
Odds Ratio
Oligonucleotide Array Sequence Analysis
Polymorphism, Single Nucleotide
Prevalence
Principal Component Analysis
Remission Induction
Chemical
Reg. No./Substance:
0/HLA-DP Antigens; 0/HLA-DP alpha-Chains; 0/HLA-DP beta-Chains; 0/HLA-DPA1 antigen; 0/HLA-DPB1 antigen
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): PLoS One
Journal ID (iso-abbrev): PLoS ONE
Journal ID (publisher-id): plos
Journal ID (pmc): plosone
ISSN: 1932-6203
Publisher: Public Library of Science, San Francisco, USA
Article Information
Download PDF
Nishida et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Received Day: 1 Month: 2 Year: 2012
Accepted Day: 16 Month: 5 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 21 Month: 6 Year: 2012
Volume: 7 Issue: 6
E-location ID: e39175
ID: 3380898
PubMed Id: 22737229
Publisher Id: PONE-D-12-03950
DOI: 10.1371/journal.pone.0039175

Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean Alternate Title:Association of HLA-DP with CHB and Viral Clearance
Nao Nishida12*
Hiromi Sawai2
Kentaro Matsuura3
Masaya Sugiyama1
Sang Hoon Ahn4
Jun Yong Park4
Shuhei Hige5
Jong-Hon Kang6
Kazuyuki Suzuki7
Masayuki Kurosaki8
Yasuhiro Asahina8
Satoshi Mochida9
Masaaki Watanabe10
Eiji Tanaka11
Masao Honda12
Shuichi Kaneko12
Etsuro Orito13
Yoshito Itoh14
Eiji Mita15
Akihiro Tamori16
Yoshikazu Murawaki17
Yoichi Hiasa18
Isao Sakaida19
Masaaki Korenaga20
Keisuke Hino20
Tatsuya Ide21
Minae Kawashima2
Yoriko Mawatari12
Megumi Sageshima2
Yuko Ogasawara2
Asako Koike22
Namiki Izumi8
Kwang-Hyub Han4
Yasuhito Tanaka3
Katsushi Tokunaga2
Masashi Mizokami1
Anand S. Mehtaedit1 Role: Editor
1Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
2Department of Human Genetics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
3Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
4Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
5Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
6Department of Internal Medicine, Teine Keijinkai Hospital, Sapporo, Japan
7Department of Gastroenterology and Hepatology, Iwate Medical University, Morioka, Japan
8Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
9Division of Gastroenterology and Hepatology, Saitama Medical University, Saitama, Japan
10Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
11Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
12Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
13Department of Gastroenterology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
14Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
15Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
16Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
17Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
18Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
19Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
20Division of Hepatology and Pancreatology, Kawasaki Medical College, Kurashiki, Japan
21Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan
22Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan
Drexel University College of Medicine, United States of America
Correspondence: * E-mail: nishida-75@umin.ac.jp
Contributed by footnote: Conceived and designed the experiments: NN HS YT. Performed the experiments: HS Y. Mawatari M. Sageshima YO. Analyzed the data: NN MK AK. Contributed reagents/materials/analysis tools: KM M. Sugiyama SHA JYP SH JHK KS M. Kurosaki YA SM MW ET MH SK EO YI EM AT Y. Murawaki YH IS M. Korenaga KH TI NI KHH YT MM. Wrote the paper: NN M. Kawashima YT KT MM.

Introduction

Overall, one-third of the world’s population (2.2 billion) is infected with hepatitis B virus (HBV), and about 15% of these are chronic carriers. About 75% of the chronic carriers live in the east-south Asia and east pacific area, and there are 1.3–1.5 million chronic carriers living in Japan [1]. Of chronic carriers, 10–15% develop liver cirrhosis (LC), liver failure and hepatocellular carcinoma (HCC), and the remaining individuals eventually achieve a state of nonreplicative infection, resulting in hepatitis B surface antigen (HBsAg) negative and hepatitis B core antibody (anti-HBc) positive, i.e. HBV-resolved individuals [2][3]. In Japan, although the major route of HBV transmission was perinatal transmission and horizontal transmission in early childhood, infant HBV carriers have successfully been reduced since 1986 through a selective vaccination policy by the Japanese government [4][7]. However, the prevalence of HBV genotype A in acute HBV (AHB) infection has increased markedly since 2000, reaching approximately 52% in 2008 due to the lack of a universal HB vaccination, and around 10% of AHB cases could be persistent infection [8][9]. Viral factors, as well as host factors, are thought to be associated with persistent HB infection.

In 2009, significant associations between chronic hepatitis B (CHB) and a region including HLA-DPA1 and HLA-DPB1 were identified using 786 Japanese individuals having CHB and 2,201 control individuals through a two-stage genome-wide association study (GWAS) [10]. The same group was also subjected to a second GWAS using a total of 2,667 Japanese persistent HBV infection cases and 6,496 controls, which confirmed significant associations between the HLA-DP locus and CHB, in addition to associations with another two SNPs located in the genetic region including the HLA-DQ gene [11]. The associations between HLA-DP variants with HBV infection were replicated in other Asian populations, including Thai and Han Chinese individuals [10], [12][13]. With regard to HBV clearance, the association between the human leukocyte antigen (HLA) class II allele and clearance of HBV was confirmed by the candidate gene approach in African, Caucasian and Asian populations [14][18]. However, in a previous GWAS using samples of Japanese CHB and control individuals, the clinical data on HBV exposure in the control individuals were unknown, and this may have led to bias. Moreover, there have been no reports of GWAS using samples from HBV carriers and HBV-resolved individuals to identify host genetic factors associated with HBV clearance other than HLA class II molecules.

Here, we performed a GWAS using samples from Japanese HBV carriers, healthy controls and spontaneously HBV-resolved individuals in order to confirm or identify the host genetic factors related to CHB and viral clearance. In the subsequent replication analysis, we validated the associated SNPs in the GWAS using two independent sets of Japanese and Korean individuals. In our study, healthy controls were randomly selected with clinically no evidence of HBV exposure, therefore, HBV-resolved individuals were prepared to clearly identify the host genetic factors related with CHB or HBV clearance.


Results
Protective Effects Against Chronic Hepatitis B in Japanese and Korean Individuals

In this study, we conducted a GWAS using samples from 181 Japanese HBV carriers (including asymptomatic carriers (ASC), CHB cases, LC cases and HCC cases, based on the criteria described in Materials and Methods) and 184 healthy controls in order to identify the host genetic factors related to progression of CHB. All samples were genotyped using a genome-wide SNP typing array (Affymetrix Genome-Wide Human SNP Array 6.0 for 900 K SNPs). Figure 1a shows a genome-wide view of the single point association data based on allele frequencies using the SNPs that met the following filtering criteria: (i) SNP call rate ≥95%; (ii) minor allele frequency (MAF) ≥1% for HBV carriers and healthy controls; and (iii) no deviation from Hardy-Weinberg equilibrium (HWE) P≥0.001 in healthy controls. We identified significant associations of protective effects against CHB with two SNPs (rs3077 and rs9277542) using the allele frequency model, both of which are located in the 3′ UTR of HLA-DPA1 and in the sixth exon of HLA-DPB1, respectively (rs3077, P = 1.14×10−7, and rs9277542, P = 5.32×10−8, respectively). The association for rs9277542 reached a genome-wide level of significance in the GWAS panel (Bonferroni criterion P<8.36×10−8 (0.05/597,789)).

In order to validate the results of GWAS, a total of 32 SNPs, including the associated two SNPs (rs3077 and rs9277542), were selected for replication in two independent sets of HBV carriers and healthy controls (replication-1∶256 Japanese HBV carriers and 236 Japanese healthy controls; and replication-2∶344 Korean HBV carriers and 151 Korean healthy controls; Table 1). The associations for the original significant SNP (rs9277542) and marginal SNP (rs3077) on GWAS were replicated in both replication sets [replication-1 (Japanese); rs3077, P = 2.70×10−8, OR  = 0.48 and rs9277542, P = 3.33×10−6, OR  = 0.54; replication-2 (Korean); rs3077, P = 2.08×10−6, OR  = 0.47 and rs9277542, P = 8.29×10−5, OR  = 0.54, Table 2]. We conducted meta-analysis to combine these studies using the DerSimonian Laird method (random effects model) to incorporate variation among studies. As shown in Table 2, the odds ratios were quite similar across the three studies (GWAS and two replication studies) and no heterogeneity was observed (Phet = 0.80 for rs3077 and 0.40 for rs9277542). Pmeta values were 4.40×10−19 for rs3077 (OR  = 0.46, 95% confidence interval (CI) = 0.39–0.54), and 1.28×10−15 for rs9277542 (OR  = 0.50, 95% CI = 0.43–0.60). Among the remaining 30 SNPs in the replication study, 27 SNPs were successfully genotyped by the DigiTag2 assay with SNP call rate ≥ 95% and HWE p-value ≥ 0.01. Two SNPs (rs9276431 and rs7768538), located in the genetic region including the HLA-DQ gene, were marginally replicated in the two sets of HBV carriers and healthy controls with Mantel-Haenszel P values of 2.80×10−7 (OR  = 0.56, 95% CI = 0.45–0.70) and 1.09×10−7 (OR  = 0.53, 95% CI = 0.42–0.67), respectively, when using additive, two-tailed Cochran Mantel-Haenszel (CMH) fixed-effects model with no evidence of heterogeneity (Phet = 0.67 for rs9276431 and 0.70 for rs7768538) (Table S1).

Meta-analysis using the random effects model across 6 independent studies, including 5 additional published data, showed Pmeta = 3.94×10−45, OR  = 0.55 for rs3077, Pmeta = 1.74×10−21, OR  = 0.61 for rs9277535 and Pmeta = 1.69×10−15, OR  = 0.51 for rs9277542, with the SNP rs9277535 being located about 4-kb upstream from rs9277542 and showing strong linkage disequilibrium of r2 = 0.955 on the HapMap JPT (Table S2). As shown in Table S2, the odds ratio was very similar among the 6 studies, and heterogeneity was negligible with Phet >0.01.

Moreover, based on GWAS using samples from 94 chronic HBV carriers with LC or HCC and 87 chronic HBV carriers without LC and HCC, we found no significant SNPs associated with CHB progression (Figure S1).

Clearance of Hepatitis B virus in Japanese and Korean Individuals

We also conducted a GWAS to identify the host genetic factors related to clearance of HBV in the above 181 Japanese HBV carriers and 185 Japanese HBV-resolved individuals using a genome-wide SNP typing array (Affymetrix Genome-Wide Human SNP Array 6.0 for 900 K SNPs). The same two SNPs (rs3077 and rs9277542) showed strong associations in the allele frequency model (P = 9.24×10−7 and P = 3.15×10−5) with clearance of HBV (Figure 1b).

The above 32 SNPs, including the two associated SNPs (rs3077 and rs9277542), were selected for a replication study in two independent sets of HBV carriers and HBV resolved individuals (replication-1∶256 Japanese HBV carriers and 150 Japanese HBV resolved individuals; and replication-2∶344 Korean HBV carriers and 106 Korean HBV resolved individuals; Table 1). All 32 SNPs were genotyped using the DigiTag2 assay and 29 of 32 SNPs were successfully genotyped (Table S3). The associations of the original SNPs were replicated in both replication sets [replication-1 (Japanese): rs3077, P = 3.32×10−2, OR  = 0.72 and rs9277542, P = 1.25×10−2, OR  = 0.68; replication-2 (Korean): rs3077, P = 2.35×10−7, OR  = 0.41 and rs9277542, P = 4.97×10−6, OR  = 0.46; Table 3]. Meta-analysis using random effects model showed Pmeta = 1.56×10−4 for rs3077 (OR  = 0.51, 95% CI = 0.36–0.72), and 5.91×10−7 for rs9277542 (OR  = 0.55, 95% CI = 0.43–0.69). While there was evidence of heterogeneity between these studies for rs3077 (Phet = 0.03) and no evidence for rs9277542 (Phet = 0.19), significant associations with HBV clearance were observed with Mantel-Haenszel Pmeta = 3.28×10−12 for rs3077 and 1.42×10−10 for rs9277542, when using CMH fixed-effects model. Among the remaining 27 SNPs in the replication study, two SNPs (rs9276431 and rs7768538), located in a genetic region including HLA-DQ gene, were marginally replicated in the two sets of HBV carriers and HBV resolved individuals with Mantel-Haenszel P values of 2.10×10−5 (OR  = 0.59) and 1.10×10−5 (OR  = 0.56), respectively (Table S3), when using CMH fixed-effect model. Due to the existing heterogeneity among three groups (GWAS, Replication-1 and Replication-2) (Phet = 0.03 for rs9276431 and 0.04 for rs7768538), weak associations were observed with Pmeta = 0.03 for rs9276431 and 0.02 for rs7768538 by the random effects model meta-analysis.

Meta-analysis across 6 independent studies, including 5 additional published data, showed Pmeta = 1.48×10−9, OR  = 0.60 for rs3077, Pmeta = 1.08×10−17, OR  = 0.66 for rs9277535 and Pmeta = 5.14×10−5, OR  = 0.55 for rs9277542 (Table S4). As shown in Table S4, the OR for the rs9277535 and rs9277542 were similar among the 6 independent studies, and heterogeneity was negligible (Phet = 0.03 for rs9277535 and 0.14 for rs9277542). However, significant level of heterogeneity for rs3077 was observed with Phet = 9.57×10−6 across 5 independent studies, including our study.

URLs

The results of the present GWAS are registered at a public database: https://gwas.lifesciencedb.jp/cgi-bin/gwasdb/gwas_top.cgi.


Discussion

The recent genome-wide association study showed that the SNPs located in a genetic region including HLA-DPA1 and HLA-DPB1 genes were associated with chronic HBV infection in the Japanese and Thai population [10], [11]. In this study, we confirmed a significant association between SNPs (rs3077 and rs9277542) located in the same genetic region as HLA-DPA1 and HLA-DPB1 and protective effects against CHB in Korean and Japanese individuals. Mata-analysis using the random effects model across 6 independent studies including our study suggested that, widely in East Asian populations, variants in antigen binding sites of HLA-DP contribute to protective effects against persistent HBV infection (Table S2).

On GWAS and replication analysis with Japanese and Korean individuals, we identified associations between the same SNPs (rs3077 and rs9277542) in the HLA-DPA1 and HLA-DPB1 genes and HBV clearance; however, no new candidate SNPs from the GWAS were detected on replication analysis (Table S3). When the data of reference#18 was excluded from the meta-analysis across 6 independent studies, heterogeneity among 4 studies was estimated to be Phet = 0.15 and significant association of rs3077 with HBV clearance was observed with Pmeta = 5.88×10−24, OR  = 0.56 (Table S4). In our study, a negligible level of heterogeneity for rs3077 was also observed (Phet = 0.03) on meta-analysis by adding replication-1 (Table 3). Despite the heterogeneity in replication-1, a marginal association was observed for rs3077 with the same downward trend in the odds ratio (P = 3.32×10−2, OR  = 0.72). Moreover, meta-analysis using GWAS and replication-2 showed significant association of Pmeta = 1.89×10−12, OR  = 0.43 for rs3077 with no evidence of heterogeneity (Phet = 0.75). Although the reason why heterogeneity was observed in replication-1 is unclear, one possible reason is the clinical heterogeneity due to different kits being used for antibody testing. The associations of HLA-DPA1/−DPB1 with CHB and HBV clearance showed the same level of significance in the comparison of HBV patients with HBV resolved individuals (OR  = 0.43 for rs3077 and 0.49 for rs9277542) as the one with healthy controls (OR  = 0.46 for rs3077 and 0.50 for rs9277542), when the replication-1 was excluded in the analysis (Table 2 and Table 3). The results of meta-analysis across 6 independent studies including our study also showed the same or slightly weaker associations in the comparison of HBV patients with HBV resolved individuals (OR  = 0.56 for rs3077, 0.66 for rs9277535 and 0.55 for rs9277542) than in the one with healthy controls (OR  = 0.55 for rs3077, 0.61 for rs9277535 and 0.51 for rs9277542), which was the opposite result as we expected (Table S2 and Table S4). These results may suggest that other unknown immune system(s) exist to eliminate the HBV in the HBV resolved individuals.

Among the HLA class II loci (HLA-DPA1, HLA-DPB1 and HLA-DQB2), which were associated with CHB and HBV clearance, a weak linkage disequilibrium (r2<0.1) was observed between HLA-DQB2 locus and HLA-DPA1/−DPB1 loci in Japanese and Korean populations (Figure S2). We also found that similar linkage disequilibrium blocks (r2) were observed among three subgroups (HBV carriers, HBV resolved individuals and Healthy controls). Moreover, logistic regression analysis of HLA-DP (rs3077 and rs92775542) with use of HLA-DQ (rs9276431 and rs768538) as covariates showed that the same level of significant associations of HLA-DP with CHB and HBV clearance as shown in the single-point association analysis, while no associations of HLA-DQ with Plog >0.05 were detected both in Japanese and in Korean (Table S5). These results show that HLA-DP is the main genetic factor for susceptibility to CHB and HBV clearance, and the associations of HLA-DQB2 would result from linkage disequilibrium of HLA-DPA1/−DPB1.

In this study, we confirmed the significant associations between HLA-DPA1 and HLA-DPB1, and protective effects against CHB and HBV clearance in Japanese and Korean individuals. These results suggest that the associations between the HLA-DP locus, CHB and HBV clearance are widely replicated in East Asian populations, including Chinese, Thai, Japanese and Korean individuals; however, there have been no similar GWAS performed in Caucasian and African populations. Moreover, there were no significant SNPs associated with HCC development in this study, thus suggesting that it is necessary to increase the sample size. To clarify the pathogenesis of CHB or the mechanisms of HBV clearance, further studies are necessary, including a functional study of the HLA-DP molecule, identification of novel host genetic factors other than HLA-DP, and variation analysis of HBV.


Materials and Methods
Ethics Statement

All study protocols conform to the relevant ethical guidelines, as reflected in the a priori approval by the ethics committees of all participating universities and hospitals. The written informed consent was obtained from each patient who participated in this study and all samples were anonymized.

Genomic DNA Samples and Clinical Data

All of the 1,793 Japanese and Korean samples, including individuals with CHB, healthy controls and HBV-resolved individuals (HBsAg-negative and anti-HBc-positive), were collected at 20 multi-center hospitals (liver units with hepatologists) throughout Japan and Korea. The 19 hospitals in Japan were grouped into the following 8 areas: Hokkaido area (Hokkaido University Hospital, Teine Keijinkai Hospital), Tohoku area (Iwate Medical University Hospital), Kanto area (Musashino Red Cross Hospital, Saitama Medical University, Kitasato University Hospital, University of Tokyo), Koshin area (Shinshu University Hospital, Kanazawa University Hospital), Tokai area (Nagoya City University Hospital, Nagoya Daini Red Cross Hospital), Kinki area (Kyoto Prefectural University of Medicine Hospital, National Hospital Organization Osaka National Hospital, Osaka City University), Chugoku/Shikoku area (Tottori University Hospital, Ehime University Hospital, Yamaguchi University Hospital, Kawasaki Medical College Hospital) and Kyushu area (Kurume University Hospital). Korean samples were collected at Yonsei University College of Medicine.

HBV status was measured based on serological results for HBsAg and anti-HBc with a fully automated chemiluminescent enzyme immunoassay system (Abbott ARCHITECT; Abbott Japan, Tokyo, Japan, or LUMIPULSE f or G1200; Fujirebio, Inc., Tokyo, Japan). For clinical staging, inactive carrier (IC) state was defined by the presence of HBsAg with normal ALT levels over 1 year (examined at least four times at 3-month intervals) and without evidence of portal hypertension. Chronic hepatitis (CH) was defined by elevated ALT levels (>1.5 times the upper limit of normal [35 IU/L]) persisting over 6 months (at least by 3 bimonthly tests). Liver cirrhosis (LC) was diagnosed principally by ultrasonography (coarse liver architecture, nodular liver surface, blunt liver edges and hypersplenism), platelet counts <100,000/cm3, or a combination thereof. Histological confirmation by fine-needle biopsy of the liver was performed as required. Hepatocellular carcinoma (HCC) was diagnosed by ultrasonography, computerized tomography, magnetic resonance imaging, angiography, tumor biopsy or a combination thereof.

The Japanese control samples from HBV-resolved subjects (HBsAg-negative and anti-HBc-positive) at Nagoya City University-affiliated healthcare center were used by comprehensive agreement (anonymization in an unlinkable manner) in this study. Some of the unrelated Japanese healthy controls were obtained from the Japan Health Science Research Resources Bank (Osaka, Japan). One microgram of purified genomic DNA was dissolved in 100 µl of TE buffer (pH 8.0) (Wako, Osaka, Japan), followed by storage at −20°C until use.

SNP Genotyping and Data Cleaning

For GWAS, we genotyped a total of 550 individuals, including 181 Japanese HBV carriers, 184 Japanese healthy controls and 185 spontaneously HBV-resolved Japanese individuals (HBsAg-negative and anti-HBc-positive), using the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc., Santa Clara, CA), in accordance with the manufacturer’s instructions. The average QC call rate for 550 samples reached 98.47% (95.00–99.92%), which had an average sample call rate of 98.91% (93.55–99.74%) by determining the genotype calls of over 900 K SNPs using the Genotyping Console v4.1 software (with Birdseed v1 algorithm) provided by the manufacturer [19]. We then applied the following thresholds for SNP quality control in data cleaning: SNP call rate ≥95% and MAF ≥1% for three groups (HBV carriers, healthy controls and HBV-resolved individuals), and HWE P-value ≥0.001 for healthy controls [20]. Here, SNP call rate is defined for each SNP as the number of successfully genotyped samples divided by the number of total samples genotyped. A total of 597,789 SNPs and 590,278 SNPs on autosomal chromosomes passed the quality control filters in the genome-wide association analysis using HBV carriers and healthy controls, and using HBV carriers and HBV-resolved individuals, respectively (Figure 1). All cluster plots for the SNPs showing P<0.0001 on association analyses in the allele frequency model were confirmed by visual inspection, and SNPs with ambiguous cluster plots were excluded.

In the following replication stage, we selected a set of 32 SNPs with P<0.0001 in the GWAS using HBV carriers and HBV-resolved individuals. SNP genotyping in two independent sets of 256 Japanese HBV carriers, 236 Japanese healthy controls and 150 Japanese HBV-resolved individuals (Table 1, replication-1), and 344 Korean HBV carriers, 151 Korean healthy controls and 106 Korean HBV-resolved individuals (Table 1, replication-2) was completed for the selected 32 SNPs using the DigiTag2 assay [21], [22] and custom TaqMan SNP Genotyping Assays (Applied Biosystems, Foster City, CA) on the LightCycler 480 Real-Time PCR System (Roche, Mannheim, Germany).

Statistical Analysis

The observed associations between SNPs and the protective effects on chronic hepatitis B or clearance of hepatitis virus B were assessed by chi-squared test with a two-by-two contingency table in allele frequency model. SNPs on chromosome X were removed because gender was not matched among HBV carriers, healthy controls and HBV-resolved individuals. A total of 597,789 SNPs and 590,278 SNPs passed the quality control filters in the GWAS stage; therefore, significance levels after Bonferroni correction for multiple testing were P = 8.36×10−8 (0.05/597,789) and P = 8.47×10−8 (0.05/590,278), respectively. For the replication study, 29 of 32 SNPs were successfully genotyped; therefore, we applied P = 0.0017 (0.05/29) as a significance level, and none of the 29 markers genotyped in the replication stage showed deviations from the Hardy-Weinberg equilibrium in healthy controls (P>0.01).

The genetic inflation factor λ was estimated by applying the Cochrane-Armitage test on all SNPs and was found to be 1.056 and 1.030 in the GWAS using HBV carriers and healthy controls, and using HBV carriers and HBV-resolved individuals, respectively (Figure S3). These results suggest that the population substructure should not have any substantial effect on statistical analysis. In addition, the principal component analysis in a total of 550 individuals in the GWAS stage together with the HapMap samples also revealed that the effect of population stratification was negligible (Figure S4).

Based on the genotype data of a total of 1,793 samples including 1,192 Japanese samples and 601 Korean samples in both GWAS and replication stages, haplotype blocks were estimated using the Gabriel’s algorithm using the Haploview software (v4.2) (Figure S2). In the logistic regression analysis, two SNPs (rs9276431 and rs7768538) within the HLA-DQ locus were individually involved as a covariate (Table S5). Statistical analyses were performed using the SNP & Variation Suite 7 software (Golden Helix, MT, USA).


Supporting Information Figure S1

GWAS using samples from HBV carriers with LC or HCC, and HBV carriers without LC and HCC.P values were calculated using chi-squared test for allele frequencies.

(PPTX)


Figure S2

Estimation of linkage disequilibrium blocks in HBV patients, HBV resolved individuals and healthy controls in Japanese and Korean. The LD blocks (r2) were analyzed using the Gabriel’s algorithm.

(PPTX)


Figure S3

Quantile-quantile plot for test statistics (allele-based chi-squared tests) for GWAS results. Dots represent P values of each SNP that passed the quality control filters. Inflation factor λ was estimated to be: a) 1.056 in the analysis with HBV carriers and healthy controls; and b) 1.030 with HBV carriers and HBV-resolved individuals.

(PPTX)


Figure S4

Principal component analysis on a total of 550 individuals in GWAS, together with HapMap samples (CEU, YRI and JPT).

(PPTX)


Table S1

Results for 29 SNPs selected in replication study using samples of HBV carriers and healthy controls.aP values by chi-squared test for allelic model. bOdds ratio of minor allele from two-by-two allele frequency table. cMeta-analysis was tested using additive, two-tailed CMH fixed-effects model.

(XLSX)


Click here for additional data file (pone.0039175.s005.xlsx)

Table S2

Results of meta-analysis for protective effects against persistent HB infection across 6 independent studies, including this study.aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). bOdds ratio of minor allele from two-by-two allele frequency table. cP value of Pearson’s chi-squared test for allele model. dHeterogeneity was tested using general variance-based method. eMeta-analysis was tested using the random effects model.

(XLSX)


Click here for additional data file (pone.0039175.s006.xlsx)

Table S3

Results for 29 SNPs selected in replication study using samples from HBV carriers and HBV-resolved individuals.aP values by chi-squared test for allelic model. bOdds ratio of minor allele from two-by-two allele frequency table. cMeta-analysis was tested using additive, two-tailed CMH fixed-effects model.

(XLSX)


Click here for additional data file (pone.0039175.s007.xlsx)

Table S4

Results of meta-analysis for clearance of HBV across 6 independent studies, including this study.aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). bOdds ratio of minor allele from two-by-two allele frequency table. cP value of Pearson’s chi-squared test for allele model. dHeterogeneity was tested using general variance-based method. eMeta-analysis was tested using the random effects model.

(XLSX)


Click here for additional data file (pone.0039175.s008.xlsx)

Table S5

Logistic regression analysis of HLA-DP (rs3077 and rs9277542) and HLA-DQ (rs9276431 and rs7768538) with susceptibility to CHB and HBV clearance using the HLA-DQ genotypes individually as a covariate.

(XLSX)


Click here for additional data file (pone.0039175.s009.xlsx)


Notes

Competing Interests: AK is an employee of the Central Research Laboratory, Hitachi Ltd. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Funding: This work was supported by Grants-in-Aid from the Ministry of Health, Labour, and Welfare of Japan (H22-kanen-005, H23-kanen-005), the Japan Science and Technology Agency (09038024), and the Miyakawa Memorial Research Foundation. Partial support by Grant-in-Aid for Young Scientists (B) (22710191) from the Ministry of Education, Culture, Sports, Science, and Technology is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We thank all the patients and families who contributed to the study and Ms. Yasuka Uehara-Shibata and Ms. Yoshimi Ishibashi for technical assistance.


References
1. Arauz-Ruiz P,Norder H,Robertson BH,Magnius LO. Year: 2002Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America.J Gen Virol832059207312124470
2. Hoofnagle JH,Doo E,Liang TJ,Fleischer R,Lok ASF. Year: 2007Management of hepatitis B: Summary of a clinical research workshop.Hepatology451056107517393513
3. Yokosuka O,Kurosaki M,Imazeki F,Arase Y,Tanaka Y,et al. Year: 2011Management of hepatitis B: Consensus of the Japan society of Hepatology 2009.Hepatol Res4112121070536
4. Tada H,Uga N,Fuse Y,Shimizu M,Nemoto Y,et al. Year: 1992Prevention of perinatal transmission of hepatitis B virus carrier state.Acta Paediatr Jpn346566591285514
5. Stevens CE,Toy PT,Taylor PE,Lee T,Yip HY. Year: 1992Prospects for control of hepatitis B virus infection: implications of childhood vaccination and long-term protection.Pediatrics901701731534885
6. Szmuness W. Year: 1979Large-scale efficacy trials of hepatitis B vaccines in the USA: baseline data and protocols.J Med Virol4327340541683
7. Kwon H,Lok AS. Year: 2011Hepatitis B therapy.Nat Rev Gastroenterol Hepatol827528421423260
8. Kobayashi M,Ikeda K,Arase Y,Suzuki F,Akuta N,et al. Year: 2008Change of Hepatitis B virus genotypes in acute and chronic infections in Japan.J Med Virol801880188418814241
9. Yano K,Tamada Y,Yatsuhashi H,Komori A,Abiru S,et al. Year: 2010Dynamic epidemiology of acute viral hepatitis in Japan.Intervirology53707520068345
10. Kamatani Y,Wattanapokayakit S,Ochi H,Kawaguchi T,Takahashi A,et al. Year: 2009A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians.Nat Genet4159159519349983
11. Mbarek H,Ochi H,Urabe Y,Kumar V,Kubo M,et al. Year: 2011A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population.Hum Mol Genet203884389221750111
12. Li J,Yang D,He Y,Wang M,Wen Z,et al. Year: 2011Associations of HLA-DP variants with hepatitis B virus infection in southern and northern Han Chinese populations: a multicenter case-control study.PLoS ONE6e2422121904616
13. Guo X,Zhang Y,Li J,Ma J,Wei Z,et al. Year: 2011Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population.Hepatol53422428
14. Thursz MR,Kwiatkowski D,Allsopp CEM,Greenwood BM,Thomas HC,et al. Year: 1995Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia.N Engl J Med332106510697898524
15. Godkin A,Davenport M,Hill AVS. Year: 2005Molecular analysis of HLA class II associations with hepatitis B virus clearance and vaccine nonresponsiveness.Hepatology411383139015915462
16. An P,Winkler C,Guan L,O’Brien SJ,Zeng Z,et al. Year: 2011A common HLA-DPA1 variant is a major determinant of hepatitis B virus clearance in Han Chinese.J Infect Dis20394394721402545
17. Wang L,Wu X-P,Zhang W,Zhu D-H,Wang Y,et al. Year: 2011Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control study.
18. Hu L,Zhai X,Liu J,Chu M,Pan S,et al. Year: 2011Genetic variants in HLA-DP/DQ influence both hepatitis B virus clearance and Hepatocellular carcinoma development.Hepatology (in press)..
19. Nishida N,Koike A,Tajima A,Ogasawara Y,Ishibashi Y,et al. Year: 2008Evaluating the performance of Affymetrix SNP Array 6.0 platform.BMC Genomics943118803882
20. Miyagawa T,Nishida N,Ohashi J,Kimura R,Fujimoto A,et al. Year: 2008Appropriate data cleaning methods for genome-wide association study.J Hum Genet5388689318695938
21. Nishida N,Tanabe T,Takasu M,Suyama A,Tokunaga K. Year: 2007Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay.Anal Biochem364788517359929
22. Nishida N,Mawatari Y,Sageshima M,Tokunaga K. Year: 2012Highly parallel and short-acting amplification with locus-specific primers to detect single nucleotide polymorphisms by the DigiTag2 assay.PLoS ONE7e2996722253840

Figures

[Figure ID: pone-0039175-g001]
doi: 10.1371/journal.pone.0039175.g001.
Figure 1  Results of genome-wide association studies.

a) HBV carriers and healthy controls, and b) HBV carriers and HBV-resolved individuals were compared. P values were calculated by chi-squared test for allele frequencies. Dots with arrows on chromosome 6 show strong associations with protective effects against persistent HB infection and with HBV clearance.



Tables
[TableWrap ID: pone-0039175-t001] doi: 10.1371/journal.pone.0039175.t001.
Table 1  Number of study samples.
GWAS Replication-1 Replication-2
population Japanese Japanese Korean
HBV carriers Total 181 256 344
IC 20 94
CH 67 101 177
LC 3 10
HCC 91 51 167
Healthy controls 184 236 151
Resolved individuals 185 150 106

Abbreviation: IC, Inactive Carrier; CH, Chronic Hepatitis; LC, Liver Cirrhosis; HCC, Hepatocellular Carcinoma.


[TableWrap ID: pone-0039175-t002] doi: 10.1371/journal.pone.0039175.t002.
Table 2  Results of replication study for protective effects against CHB.
Position MAFa Allele Stage HBV carriers Healthy controls ORb
dbSNP rsID Chr Buld 36.3 Nearest Gene (allele) (1/2) (population) 11 12 22 11 12 22 HWEp 95% CI P-valuec Phetd
rs3077 6 33141000 HLA-DPA1 0.44 T/C GWAS 13 51 117 28 88 67 0.919 0.42 1.14×10−7
(T) (Japanese) (7.2) (28.2) (64.6) (15.3) (48.1) (36.6) (0.30–0.58)
Replication-1 26 95 134 46 125 65 0.309 0.48 2.70×10−8
(Japanese) (10.2) (37.3) (52.5) (19.5) (53.0) (27.5) (0.37–0.62)
Replication-2 23 81 111 31 74 40 0.767 0.47 2.08×10−6
(Korean) (10.7) (37.7) (51.6) (21.4) (51.0) (27.6) (0.35–0.65)
Meta-analysise 0.46 4.40×10−19 0.80
(0.39–0.54)
rs9277542 6 33163225 HLA-DPB1 0.45 T/C GWAS 18 53 110 29 102 52 0.073 0.42 5.32×10−8
(T) (Japanese) (9.9) (29.3) (60.8) (15.8) (55.7) (28.4) (0.31–0.58)
Replication-1 30 106 118 54 114 67 0.681 0.54 3.33×10−6
(Japanese) (11.8) (41.7) (46.5) (23.0) (48.5) (28.5) (0.42–0.70)
Replication-2 30 87 94 35 72 36 0.933 0.54 8.29×10−5
(Korean) (14.2) (41.2) (44.5) (24.5) (50.3) (25.2) (0.40–0.74)
Meta-analysise 0.50 1.28×10−15 0.40
(0.43–0.60)

aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19).

bOdds ratio of minor allele from two-by-two allele frequency table.

cP value of Pearson’s chi-square test for allelic model.

dHeterogeneity was tested using general variance-based method.

eMeta-analysis was tested using the random effects model.


[TableWrap ID: pone-0039175-t003] doi: 10.1371/journal.pone.0039175.t003.
Table 3  Results of replication study for clearance of hepatitis B virus.
Position MAFa Allele Stage HBV carriers Resolved individuals ORb
dbSNP rsID Chr Buld 36.3 Nearest Gene (allele) (1/2) (population) 11 12 22 11 12 22 95% CI P-valuec Phetd
rs3077 6 33141000 HLA-DPA1 0.44 T/C GWAS 13 51 117 29 82 74 0.44 9.24×10−7
(T) (Japanese) (7.2) (28.2) (64.6) (15.7) (44.3) (40.0) (0.32–0.61)
Replication-1 26 95 134 20 64 60 0.72 3.32×10−2
(Japanese) (10.2) (37.3) (52.5) (13.9) (44.4) (41.7) (0.53–0.97)
Replication-2 23 81 111 29 48 28 0.41 2.35×10−7
(Korean) (10.7) (37.7) (51.6) (27.6) (45.7) (26.7) (0.29–0.58)
Meta-analysise 0.51 1.56×10−4 0.03
(0.36–0.72)
Meta-analysise 0.43 1.89×10−12 0.75
(GWAS+replication-2) (0.34–0.54)
rs9277542 6 33163225 HLA-DPB1 0.45 T/C GWAS 18 53 110 28 88 69 0.51 3.15×10−5
(T) (Japanese) (9.9) (29.3) (60.8) (15.1) (47.6) (37.3) (0.37–0.70)
Replication-1 30 106 118 28 62 52 0.68 1.25×10−2
(Japanese) (11.8) (41.7) (46.5) (19.7) (43.7) (36.6) (0.51–0.92)
Replication-2 30 87 94 30 53 22 0.46 4.97×10−6
(Korean) (14.2) (41.2) (44.5) (28.6) (50.5) (21.0) (0.33–0.64)
Meta-analysise 0.55 5.91×10−7 0.19
(0.43–0.69)
Meta-analysise 0.49 9.69×10−10 0.65
(GWAS+replication-2) (0.39–0.61)

aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19).

bOdds ratio of minor allele from two-by-two allele frequency table.

cP value of Pearson’s chi-square test for allelic model.

dHeterogeneity was tested using general variance-based method.

eMeta-analysis was tested using the random effects model.



Article Categories:
  • Research Article
Article Categories:
  • Biology
    • Computational Biology
      • Population Genetics
        • Genetic Polymorphism
    • Genetics
      • Human Genetics
        • Genome-Wide Association Studies
Article Categories:
  • Medicine
    • Gastroenterology and Hepatology
      • Liver Diseases
        • Infectious Hepatitis
          • Hepatitis B
    • Infectious Diseases
      • Viral Diseases
        • Hepatitis
          • Hepatitis B


Previous Document:  Predictors of attrition and academic success of medical students: a 30-year retrospective study.
Next Document:  Testosterone is associated with erectile dysfunction: a cross-sectional study in Chinese men.