Document Detail

Gallium(III) Triflate: An Efficient and a Sustainable Lewis Acid Catalyst for Organic Synthetic Transformations.
MedLine Citation:
PMID:  22148160     Owner:  NLM     Status:  Publisher    
Green chemical processes play a crucial role in sustainable development, and efficient recyclable catalysts that can be conveniently applied in various chemical reactions are the key elements for the development of sustainable synthetic processes. Many organic transformations rely on Lewis and Brønsted acid catalysts, and such molecules have been widely studied in organic synthesis. Over the years, researchers have looked for Lewis acid catalysts that provide high selectivity and high turnover frequency but are also stable in aqueous media and recoverable. Since the first preparation of trifluoromethanesulfonic acid by Hazeldine (triflic acid, HOTf), researchers have synthesized and used numerous metal triflates in a variety of organic reactions. Even though the rare earth metal triflates have played a major role in these studies, the majority of rare earth triflates lack one or more of the primary properties of sustainable catalysts: low cost and easy availability of the metals, easy preparation of triflates, aqueous/thermal stability, recyclability, and catalytic efficiency. In this Account, we describe the synthetic applications of Ga(OTf)(3) and its advantages over similar catalysts. Ga(OTf)(3) can be conveniently prepared from gallium metal or gallium chloride in excess of trifluoromethanesulfonic acid (triflic acid) under reflux. Among many Lewis acid catalysts recently studied, Ga(OTf)(3) is water tolerant and soluble and requires very low catalyst loading to drive various acid-catalyzed reactions including Friedel-Crafts alkylation, hydroxyalkylation, and acylation selectively and efficiently. In many reactions Ga(OTf)(3) demonstrated high chemo- and regioselectivity, high yields, excellent stability, and recyclability. We successfully synthesized many biologically active heterocycles and their fluoroanalogs under mild conditions. Many challenging reactions such as the ketonic Strecker reactions proceed efficiently via Ga(OTf)(3) catalysis. Because it is stable in water, this catalyst provides the opportunity to study substrates and develop new synthetic protocols in aqueous media, significantly reducing the production of hazardous waste from organic solvents and toxic catalyst systems.
G K Surya Prakash; Thomas Mathew; George A Olah
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2011-12-9
Journal Detail:
Title:  Accounts of chemical research     Volume:  -     ISSN:  1520-4898     ISO Abbreviation:  -     Publication Date:  2011 Dec 
Date Detail:
Created Date:  2011-12-13     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0157313     Medline TA:  Acc Chem Res     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California , 837 Bloom Walk, Los Angeles, California 90089-1661, United States.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathodes for Solid-State Lithium-Oxygen Batteries.
Next Document:  Enhanced Gaussia luciferase blood assay for monitoring of in vivo biological processes.