Document Detail

Galectin-3 deficiency protects pancreatic islet cells from cytokine-triggered apoptosis in vitro.
MedLine Citation:
PMID:  23280610     Owner:  NLM     Status:  Publisher    
Beta cell apoptosis is a hallmark of diabetes. Since we have previously shown that galectin-3 deficient (LGALS3(-/-) ) mice are relatively resistant to diabetes induction, the aim of this study was to examine whether beta cell apoptosis depends on the presence of galectin-3 and to delineate the underlying mechanism. Deficiency of galectin-3, either hereditary or induced through application of chemical inhibitors, β-lactose or TD139, supported survival and function of islet beta cells compromised by TNF-α+IFN-γ+IL-1β stimulus. Similarly, inhibition of galectin-3 by β-lactose or TD139 reduced cytokine-triggered apoptosis of beta cells, leading to conclusion that endogenous galectin-3 propagates beta apoptosis in the presence of an inflammatory milieu. Exploring apoptosis-related molecules expression in primary islet cells before and after treatment with cytokines we found that galectin-3 ablation affected the expression of major components of mitochondrial apoptotic pathway, such as BAX, caspase-9, Apaf, SMAC, caspase-3, and AIF. In contrast, anti-apoptotic molecules Bcl-2 and Bcl-XL were up-regulated in LGALS3(-/-) islet cells when compared to wild type (WT) counterparts (C57BL/6), resulting in increased ratio of anti-apoptotic versus pro-apoptotic molecules. However, Fas-triggered apoptotic pathway as well as extracellular signal-regulated kinase 1/2 (ERK1/2) was not influenced by LGALS-3 deletion. All together, these results point to an important role of endogenous galectin-3 in beta cell apoptosis in the inflammatory milieu that occurs during diabetes pathogenesis and implicates impairment of mitochondrial apoptotic pathway as a key event in protection from beta cell apoptosis in the absence of galectin-3. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
Tamara Saksida; Ivana Nikolic; Milica Vujicic; Ulf J Nilsson; Hakon Leffler; Miodrag L Lukic; Ivana Stojanovic; Stanislava Stosic-Grujicic
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-12-31
Journal Detail:
Title:  Journal of cellular physiology     Volume:  -     ISSN:  1097-4652     ISO Abbreviation:  J. Cell. Physiol.     Publication Date:  2012 Dec 
Date Detail:
Created Date:  2013-1-2     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0050222     Medline TA:  J Cell Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012 Wiley Periodicals, Inc.
Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.
Next Document:  First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating pr...