Document Detail

Frequency dependent transmission characteristics between arterial blood pressure and intracranial pressure in rats.
MedLine Citation:
PMID:  23367202     Owner:  NLM     Status:  MEDLINE    
The pulsatile energy transmission between arterial blood pressure (BP) and intracranial pressure (ICP) is affected by cerebrospinal fluid (CSF) and brain tissue. Studies in dogs have shown that the transfer function (TF) between BP and ICP shows damping of pulsatile energy around heart rate frequency (1-3Hz) with notch filter characteristics, and the amount of damping is sensitive to cerebral compliance. This investigation aimed to assess whether this notch filter characteristic is an intrinsic property of the brain enclosed in a rigid skull and therefore applies across species with a large difference in body size. This was done by determining the TF between BP and ICP in rats with corresponding significantly smaller body size and higher heart rate (5-7 Hz) compared to dogs. Arterial BP and ICP waveforms were recorded in 8 anaesthetized (urethane) adult male Sprague-Dawley rats with solid state micro-sensor transducer catheters. The TF was computed as the ratio of ICP and arterial BP waveform amplitudes for the first 4 harmonics. Arterial BP and ICP signals were normalized for pulse amplitude such that attenuation or amplification is detected for any TF values significantly different to unity. Mean cardiac frequency was 5.72 Hz (range 4.6 - 7.11 Hz). Of the 4 harmonics only the heart rate frequency band showed a statistically significant attenuation of 17%, while the higher harmonics showed a progressive amplification. Findings show that the rat brain acts as a selective frequency pulsation absorber of energy centered at heart rate frequency. This similarity with larger animals indicates a possible allometric mechanism underlying this phenomenon, with notch filter characteristic frequency scaled to body size. This study suggests that the TF between arterial BP and ICP is an intrinsic property of the brain tissue and CSF enclosed in a rigid compartment and can be used to assess changes in cerebral compliance due to abnormal CSF pressure and flow as occur in hydrocephalus.
Mi Ok Kim; Jonathan Li; Ahmad Qasem; Stuart L Graham; Alberto P Avolio
Publication Detail:
Type:  Journal Article; Research Support, Non-U.S. Gov't    
Journal Detail:
Title:  Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference     Volume:  2012     ISSN:  1557-170X     ISO Abbreviation:  Conf Proc IEEE Eng Med Biol Soc     Publication Date:  2012  
Date Detail:
Created Date:  2013-01-31     Completed Date:  2013-07-24     Revised Date:  2014-08-21    
Medline Journal Info:
Nlm Unique ID:  101243413     Medline TA:  Conf Proc IEEE Eng Med Biol Soc     Country:  United States    
Other Details:
Languages:  eng     Pagination:  5614-7     Citation Subset:  IM    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Blood Pressure*
Intracranial Pressure*
Rats, Sprague-Dawley

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Non invasive assessment of carotid and femoral arterial pressure using B-mode ultrasound diameter wa...
Next Document:  Investigation of cerebral hemodynamics and collateralization in asymptomatic carotid stenoses.