Free energy estimation of short DNA duplex hybridizations.  
Jump to Full Text  
MedLine Citation:

PMID: 20181279 Owner: NLM Status: MEDLINE 
Abstract/OtherAbstract:

BACKGROUND: Estimation of DNA duplex hybridization free energy is widely used for predicting crosshybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one. RESULTS: We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended NearestNeighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GCcontent percentage range. For perfect matches, we propose an extension of the NearestNeighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under nonstandard experimental conditions. CONCLUSIONS: Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended NearestNeighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies for perfect match duplexes under both standard and nonstandard experimental conditions and may serve as a baseline for further developments in this area of research. 
Authors:

Dan Tulpan; Mirela Andronescu; Serge Leger 
Related Documents
:

22677389  A physicsbased approach of coarsegraining the cytoplasm of escherichia coli (cgcyto). 21415539  Prediction of bloodbrain distribution: effect of ionization. 21271329  Effects of outdoor weathering on facial prosthetic elastomers. 21502169  Constraining predictions of the carbon cycle using data. 21212319  Astronomy in the time domain. 19385689  Computing ion solvation free energies using the dipolar poisson model. 15227559  Integration of webbased and pcbased clinical research databases. 15351989  Use of sybr14, 7aminoactinomycin d, and jc1 in assessing sperm damage from rats with... 22003319  Distributed lag linear and nonlinear models in r: the package dlnm. 
Publication Detail:

Type: Journal Article; Research Support, NonU.S. Gov't Date: 20100224 
Journal Detail:

Title: BMC bioinformatics Volume: 11 ISSN: 14712105 ISO Abbreviation: BMC Bioinformatics Publication Date: 2010 
Date Detail:

Created Date: 20100312 Completed Date: 20100511 Revised Date: 20130530 
Medline Journal Info:

Nlm Unique ID: 100965194 Medline TA: BMC Bioinformatics Country: England 
Other Details:

Languages: eng Pagination: 105 Citation Subset: IM 
Affiliation:

National Research Council of Canada, Institute of Information Technology, 100 des Aboiteaux Street, Suite 1100, Moncton, NB E1A7R1, Canada. dan.tulpan@nrccnrc.gc.ca 
Export Citation:

APA/MLA Format Download EndNote Download BibTex 
MeSH Terms  
Descriptor/Qualifier:

Algorithms Base Composition Base Sequence DNA / chemistry* Models, Molecular Nucleic Acid Conformation Nucleic Acid Hybridization Oligonucleotides / chemistry Thermodynamics* 
Chemical  
Reg. No./Substance:

0/Oligonucleotides; 9007492/DNA 
Comments/Corrections 
Full Text  
Journal Information Journal ID (nlmta): BMC Bioinformatics ISSN: 14712105 Publisher: BioMed Central 
Article Information Download PDF Copyright ©2010 Tulpan et al; licensee BioMed Central Ltd. openaccess: Received Day: 6 Month: 10 Year: 2009 Accepted Day: 24 Month: 2 Year: 2010 collection publication date: Year: 2010 Electronic publication date: Day: 24 Month: 2 Year: 2010 Volume: 11First Page: 105 Last Page: 105 Publisher Id: 1471210511105 PubMed Id: 20181279 DOI: 10.1186/1471210511105 
Free energy estimation of short DNA duplex hybridizations  
Dan Tulpan1  Email: dan.tulpan@nrccnrc.gc.ca 
Mirela Andronescu2  Email: andrones@cs.ubc.ca 
Serge Leger1  Email: serge.leger@nrccnrc.gc.ca 
1National Research Council of Canada, Institute of Information Technology, 100 des Aboiteaux Street, Suite 1100, Moncton, NB, E1A 7R1, Canada 

2Department of Genome Sciences, University of Washington, 1705 NE Pacific St, Seattle, WA 981955065, USA 
Predicting the stability of a DNA duplex from base sequences is a well studied problem nowadays. Nevertheless, the accuracy of DNA duplex stability predictions largely varies with sequence length, base composition and experimental conditions. The Thermodynamic NearestNeighbour (TNN) Model [^{1}] is a stateoftheart approach that is used to estimate the stability of a single or a pair of DNA (or RNA) molecules based on pairwise base interactions and structural conformations. A large collection of thermodynamic nearestneighbour parameters were acquired by interpolation of results obtained from various experimental processes like NMR [^{2}] and optical melting studies [^{1},^{3}]. The accuracy of computing free energies for DNA duplexes is an important aspect for all prediction methods, considering their direct application for selecting, for example, microarray probes that perfectly hybridize with their complements within a prespecified hybridization interval, while avoiding selfhybridization for each probe [^{4}]. Here we select four widely used, publicly available computer programs that implement the TNN Model using large numbers of experimentally derived thermodynamic parameters, namely: the MultiRNAFold v2.0 package [^{5},^{6}] with two sets of thermodynamic parameters, the Vienna Package v1.8.1 [^{7}] and the UNAFold v3.5 package [^{8}].
The MultiRNAFold package (including the PairFold program for duplexes) predicts the minimum free energy, suboptimal secondary structures and free energy changes of one, two, or several interacting nucleic acid sequences. The thermodynamic model for the thermodynamic stability of a joint secondary structure for two DNA or RNA molecules at a given temperature is performed similarly to that of a single molecule [^{9}], except that an intermolecular initiation penalty is added. The PairFold algorithm uses dynamic programming to calculate minimum free energy secondary structures and runs in time cubic in the lengths of the input sequences (Θ(n^{3})). PairFold uses RNA thermodynamic parameters from the Turner Laboratory [^{10}] and DNA thermodynamic parameters from the Mathews and SantaLucia laboratories [^{11},^{12}].
The Vienna Package consists of a suite of computer programs and libraries for prediction of RNA and DNA secondary structures. Nucleic acid secondary structure prediction is done via free energy minimization using three dynamic programming algorithms for structure prediction: the minimum free energy algorithm of [^{13}], which produces a single optimal structure, the partition function algorithm of [^{14}], which calculates base pair probabilities in a thermodynamic ensemble, and the suboptimal folding algorithm of [^{15}], which generates all suboptimal structures within a given energy range of the optimal energy.
UNAFold, the acronym for "Unified Nucleic Acid Folding", is a software package for RNA and DNA folding and hybridization prediction. UNAFold folds singlestranded RNA or DNA, or two single DNA or RNA strands, by computing partition functions for various states of hybridization. The partition functions will then help to derive base pair probabilities and stochastic samples of foldings or hybridizations. The package provides various energy minimization methods, which compute minimum free energy hybridizations and suboptimal foldings.
All three packages use similar dynamic programming algorithms for prediction of minimum free energy (MFE) and suboptimal structures and for partition function calculations. For the purposes of our work (i.e., DNA duplex MFE secondary structure prediction and free energy of hybridization), the main differences lie in the thermodynamic parameters used (SantaLucia or Mathews), and in the features considered (for example, the Vienna Package does not consider special types of polyC hairpin loops in their model, whereas the other two packages do). Thus our first goal is to quantify the impact of these differences on the accuracy of DNA duplex free energy approximations. Throughout the paper, we use a set of measures that reflect the degree of similarity of calculated and experimental secondary structures and free energies. Based on these measures we quantify the accuracy of the predictions of the aforementioned programs using a collection of 695 experimental DNA duplex data that we collected from 29 publications.
We also introduce in this work an extended NearestNeighbour Model for perfect matches based on triplet interactions, that can approximate free energies for DNA duplexes under a wide range of temperatures, sodium and sequence concentrations. The model is similar to the one introduced in 1999 by Owczarzy et al. [^{16}], the main difference residing in the inclusion of only triplet interactions for our model, rather than a mixture of singlets, doublets and triplets for the other. Thus, our second goal is to show that such a model outperforms simpler models based on doublet interactions and produces more accurate free energy approximations for DNA duplex hybridizations occurring in nonstandard experimental environments (for example for different sodium concentrations or at different temperatures).
In this work, we compare similarities and correlations of free energy values calculated using three publicly available packages, namely MultiRNAFold, UNAFold and Vienna Package and a NearestNeighbour (NN) Model for perfect matches based on triplet interactions. For this purpose, we collected and used a data set with 695 pairs of short DNA sequences and we investigated what method produces the closest value to the experimental free energy and under what circumstances. We acknowledge the fact that not all sequence lengths are equally represented in the benchmark data set simply due to their availability and thus our analysis may apply better to shorter sequences. The majority (91.37%) of experimental free energy calculations were obtained for perfect (0 mismatches) and almost perfect matches (1 mismatch), thus the current DNA parameter sets tend to have higher accuracy for closeto perfect match DNA duplexes. Another bias in the analysis may come from the fact that some authors have already tried to reconcile the existing differences in free energy model parameters [^{17},^{18}] by optimizing sets of DNA parameters using the same sequences already present in the benchmark data set.
We begin the presentation of our results by introducing a measure that provides insights into "worst" and "best" estimates for minimum free energies. Thus, the first comparison involves the absolute differences between experimental and estimated free energies (MFE_AD) among all the methods for model evaluation (column 3 in Table 1) and model prediction (column 3 in Table 2). In an ideal scenario, the estimated free energy would equal the experimentally inferred one, nevertheless in practice we would settle for a low absolute difference. In both scenarios, namely the evaluation of free energy estimates and the evaluation of secondary structure predictions, the largest maximal MFE_AD (18.4 kcal/mol in both) were obtained for the PairFoldMathews method, while the minimal MFE_AD (13 kcal/mol for EVALFE and 11.88 kcal/mol for EVALSS) corresponds to the UNAFold method (see Methods for details). The average differences for the EVALFE methods range between 2.41 kcal/mol (UNAFold) and 3.16 kcal/mol (Vienna Package), while for the prediction methods the interval is slightly shifted towards zero. We also observed a similar improvement trend for MFE_AD standard deviations of EVALSS methods versus EVALFE methods, a phenomenon that can be explained by the intrinsic regressionbased construction of the underlying DNA parameters used by each method.
We measure the root mean squared error between experimentally determined and predicted free energies. In an ideal scenario where predicted values equal experimental values, the RMSE would be zero, thus the lower the RMSE value is, the closer the predicted values are to the experimental ones. Here, all methods produce comparably low RMSEs, the lowest EVALFE RMSE (3.876) and EVALSS RMSE (3.667) being obtained in both cases with Vienna Package (column 5 in Tables 3 and 4).
A correlation coefficient is traditionally defined as a symmetric, scaleinvariant measure of association between two random variables, which takes values between 1 and 1. The extreme values indicate a perfect positive (1) or negative (1) correlation, while 0 means no correlation. Positive Pearson Product Moment correlations are observed for all methods when experimental and evaluated or predicted free energies are considered as random variables. The highest Pearson correlation coefficients (~ .75 and ~ .77) are consistently obtained with the PairFoldSantaLucia method for both EVALFE and EVALSS, closely followed by UNAfold, Vienna Package and PairFoldMathews. A major and consistent deviation from the correlation line of approximately 8 Kcal/mol for the data collected from Doktycz et al. [^{19}] and a few other minor deviations for the data collected from four additional publications [^{20}^{}^{23}] were consistently noticed for all free energy calculation methods (see Figures 1 and 2). The majority of the deviations (e.g. Doktycz et al. [^{19}]) may come from potentially different free energy interpolation functions used in those studies.
If we consider only perfect match data, the TNNTripletsPM Model (see Methods) is capable of estimating free energies that correlate better (r = 0.92) with experimental values (see Figure 3), than all the other methods, which show an average correlation coefficient r = 0.68. We notice also an improvement in the RMSE for the TNNTripletsPM Model, compared to the other programs. To ensure that this improvement is due to the triplet aspect of the model rather than other confounding factors, we created a TNNDoubletsPM Model that has been trained and evaluated on the same perfect match data set. A detailed description of the training and evaluation procedure is provided in Tables 5 and 6. For the complete data set with perfect matches measured at various temperatures and buffer concentrations, Figures 4, 5, 6, 7, 8 and 9 show that our TNNTripletsPM Model consistently produces better correlations and RMSEs, when we run a random design experiment using 10 000 randomly selected subsets with 67% duplexes (228 perfect match duplexes) used for training and 33% duplexes (112 perfect match duplexes) used for testing. The same high correlations can be observed when running the TNNTripletsPM Model on perfect match duplex free energies measured at a temperature of 25°C and 1 M sodium concentration, while for perfect match free energies measured at 37°C and 1 M sodium concentration, the other models produce better but still comparable correlations (0.9) and RMSEs (0.7) with the TNNTripletsPM Model.
The accuracy of secondary structure prediction for various methods can be evaluated by using the newly introduced measure described in equation 5. The SSSI measure simply calculates the percentage of correctly predicted secondary structure bonds corresponding to the positions in each secondary structure (corresponding to each sequence in the duplex) that match the position in the experimental secondary structure, normalized by the sum of sequence lengths. Comparable mean SSSI values were produced by all methods with a maximal value of 96.44% attained by PairFoldSantaLucia. The lowest value (95.21%) was obtained with Vienna Package (see column 6 in Table 2). All methods have large standard deviation for SSSI values, thus suggesting a wide sample distribution.
The analysis of the variation for sensitivities and Fmeasures with respect to sequence length and GC content percentages reveals a common pattern for all prediction methods. Mean sensitivities higher than 0.9 and mean Fmeasures higher than 0.95 were obtained for all methods and all sequence lengths with one exception. For sequences of length 10 a major drop in sensitivities and Fmeasures can be observed (see Figures 10 and 11). The main cause for the abrupt drop in sensitivities seem to apply mostly for sequences whose experimentally determined secondary structures contain two consecutive mismatches (collected from [^{23}]), thus partially supporting the hypothesis that the prediction models under investigation seem to be optimized to produce better results for almost complementary pairs of DNA sequences. Next we look at how GC content % impacts the accuracy of prediction for the methods under consideration. While sensitivities and Fmeasures are higher than 0.9 for all methods for a wide range of GC content % intervals (e.g. 0% 10%, 40%  100%), there are values for which sensitivities and Fmeasures drop under 0.9 for sequences with GC content percentages in the range 10%  40%. While PairfoldMathews, PairfoldSantaLucia and UNAFold generate predictions with sensitivities higher than 0.9 for sequences with GC content percentages in the range 20%  30%, the Vienna Package has a mean sensitivity of only 0.8. For 3 out of 4 methods, the PPV equals 1 (maximum), while for the remaining one, namely the Vienna Package slightly lower mean values (0.98) were obtained.
Table 2 presents the estimated free energy parameters for DNA doublets measured at 37°C. The set of 10 parameters corresponds to the best set obtained with the procedure explained in Table 6. We compared our set of NN free energy parameters at 37°C with eight other sets of parameters reported by SantaLucia [^{18}], namely the sets obtained by Gotoh [^{24}], Vologodskii [^{25}], Breslauer [^{26}], Blake [^{27}], Benight [^{28}], SantaLucia [^{29}], Sugimoto [^{30}] and the Unified set [^{31}]. Our set of NN thermodynamic doublet parameters summarized in Figure 12 differs from the unified parameters by less than 0.5 kcal/mol in 8 out of 10 cases. We also notice that our NN set follows in general the reported qualitative trend in order of decreasing stability: GC/CG = CG/GC > GG/CC > CA/GT = GT/CA = GA/CT = CT/GA > AA/TT > AT/TA > TA/AT with one exception, namely GG/CC has a higher weight than GC/CG and CG/GC, an effect that could be caused by the low representation of the GG/CC doublets in the training set and by the absence of duplex initiation parameters in our model.
In this work we showed that no major differences exist among free energy estimations of short DNA duplex hybridization when comparing four publicly available programs that employ various sets of thermodynamic parameters.
Here we introduce a simplified TNN Model based on triplets interactions for perfect match hybridizations of DNA duplexes. The model is able to approximate free energies for DNA duplexes under various experimental conditions with higher accuracy and lower RMSEs compared to the four publicly available programs considered in this work. The improvement is more noticeable for DNA duplexes at nonstandard experimental temperature conditions (for example at 25°C). This improvement obtained with the TNN Model based on triplets could be explained by the presence of a larger set of parameters consisting of 32 unique triplets (compared to only 10 unique doublets in the classical TNN Model) that better capture the impact of sequence components on the overall free energy of a DNA duplex. An alternative and potential complementary explanation of these improvements is the use of a wider variety of experimental data points in the thermodynamic parameter extrapolation process (the model training stage) compared to the smaller and less diverse data sets used in the other four programs. Nevertheless, we notice that additional experimental data employing longer and more diverse sequences is required in order to obtain a better approximation of free energies for DNA duplexes at other nonstandard experimental conditions.
Three extensions of the TNNTripletsPM Model might improve its performance, given that additional experimental data that covers a higher percentage of the parameters and experimental condition combinations is obtained experimentally: (i) the model can incorporate weighted additive terms that account for hybridization initialization, temperature, pH, sodium concentration or sequence concentrations; (ii) the model can incorporate symmetrical and asymmetrical internal loops, multibranch loops, dangling ends and hairpin rules similar to those already existent in the classical TNN Model; (iii) the model can also incorporate positional dependencies of triplets with respect to the 5' and 3' ends of the sequences.
The present study is divided into two major sections:
• Evaluation of free energy estimates (EVALFE): a comparative assessment of free energies calculated for DNA duplexes using different methods when both the duplex sequence and the duplex experimental secondary structure are given.
• Evaluation of secondary structure predictions (EVALSS): an accuracy assessment of secondary structure predictions when only the duplex sequence is given and the secondary structure is predicted.
The benchmark data set used in this work consists of 695 experimental free energies and secondary structures for DNA duplexes, including 340 perfect matches and 355 imperfect matches. We collected these data from 29 publications and we present its characteristics in Table 1. We must mention that a total of 42 DNA duplexes were removed from the original data set (with 737 DNA duplexes  see Additional file 1) because the ctEnergy function from UNAFold failed to produce valid free energies, due to the lack of DNA parameters for mismatches. The removed data corresponds to 30 duplexes from [^{31}], 4 duplexes from [^{32}], 4 duplexes from [^{33}], 2 duplexes from [^{34}] and 2 duplexes from [^{35}]. The lengths of DNA sequences in the data set range from 4 nucleotides [^{29}] to 30 nucleotides [^{36}], some of them (length 8 and 9) being over represented (see Figure 13).
The GCcontent (%) of the sequences in the benchmark data set (see Figure 14) cover the whole spectra from 0% to 100%, with a dominant peak at 50%.
Sequence concentrations range from 17.5 × 10^{6 }M in [^{33}] to 10^{4 }M in [^{20},^{21},^{31},^{37},^{38}]. The sodium concentration varies from 0.1 M in [^{39}] and [^{40}] to 1 M in 20 out of 29 sources. The reported free energies were measured at reaction temperatures ranging between 24.85°C [^{33},^{41}] and 50°C [^{32}].
In this study, three publicly available packages were used to calculate and compare the free energies for pairs of short DNA sequences: MultiRNAFold (with Mathews and SantaLucia parameters), UNAFold and the Vienna Package. All packages implement the TNN Model based on base doublet parameters.
The basic free energy calculations implemented in MultiRNAFold and Vienna Package are performed according to the Gibbs equation:
where G° is the free energy measured, H° is the enthalpy, T is the absolute temperature measured in degrees Kelvin and S° is the entropy.
For a general twostate transition process of the type A + B ⇌ AB at equilibrium, the free energy change is calculated as follows:
where R is the gas constant (1.98717 cal/(mol K)), T is the absolute temperature, and k is the equilibrium constant.
The two main sections of this study, namely the evaluation of free energy estimates and the evaluation of secondary structure predictions, employ computational procedures made available in the corresponding software packages. The evaluation of free energy estimates (EVALFE) includes the following procedures:
• The function free energy pairfold (sequence1, sequence2, known structure) is provided by the MultiRNAFold package to compute the free energy for two sequences when the known secondary structure is given. The pairfold wrapper has been slightly modified to accept as parameters: two sequences, the temperature, the set of parameters (Mathews or SantaLucia), the nucleic acid (DNA or RNA) and the type of hybridization (with or without intramolecular interactions between nucleotides).
• The function RNAeval is provided by the Vienna Package to compute the free energy for two sequences when the known secondary structure is provided. We wrote a Python wrapper that calls this function with the following parameters: T temperature, P dna.par. The wrapper also preprocesses the sequence and structure input so to satisfy the interactivity requirements of the RNAeval function.
• The function ctEnergy is provided by the UNAFold Package to compute the free energy for two sequences when the known secondary structure is given. We wrote a Python wrapper that preprocesses the sequences and structures into a CTformatted input file and calls the function with the following parameters: n DNA, t temperature, N sodium concentration.
The evaluation of secondary structure predictions (EVALSS) includes the following procedures:
• The function pairfold mfe (sequence1, sequence2, output structure) is provided by the MultiRNAFold package to compute the minimum free energy secondary structure for two DNA sequences that fold into 'output structure'. The pairfold wrapper has been slightly modified as described above.
• The function RNAcofold is provided by the Vienna Package to predict the free energy secondary structure for two sequences. A wrapper has been created for this function to accommodate the input and the parameters for the interactive interface as described above.
• The script UNAFold.pl is provided by the UNAFold Package to predict the free energy secondary structure for two sequences. We wrote a Python wrapper that preprocesses the sequences and structures into a CTformatted input file and calls the function with the same parameters as for the ctEnergy function.
For the case when only free energies for perfect matches are evaluated, we explore an approach that extends the classical TNN Model by looking at base triplets. A similar approach was introduced in 1999 by [^{16}]. For the classical TNN Model, only ten different nearestneighbour interactions (out of 16) are possible for any WatsonCrick DNA duplex structure due to rotational identities. Here A is hydrogen bonded with T and G is hydrogen bonded with C. These interactions are AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Here the slash, /, separates strands in anti parallel orientation (e.g., TC/AG means 5'  TC  3' paired with 3'  AG  5'). While the classical TNN model assumes that the stability of a DNA duplex depends on the identity and orientation of only close neighbouring base pairs, the one based on triplet interactions takes the approach one step further and assumes that the stability of a DNA duplex can be approximated if the first two neighbours of each base are considered. Since our goal is to examine and compare the impact of doublet versus triplet interactions on the accuracy of free energy estimations, the approach proposed in this paper relies solely on triplet interactions, while the one proposed by [^{16}] uses a more complex cumulative approach that combines singlet, doublet and triplet interactions within the same model. Due to rotational identities, only 32 different nearestneighbour interactions are possible (out of a total of 64) for any WatsonCrick triplet structure. These interactions are enumerated in Table 2 together with corresponding parametric values obtained via a leastmean squared optimization solution for equation 3.
where F is a N × 32 matrix of counts for all perfect match data points, X is a vector with 32 unknown triplet parameter values, and R is a vector with N free energy experimental values for perfect matches. We solve the following equation:
These values were obtained by using an over determined system of N equations (3) and solving equation 4 with a leastmean squared optimization function (implemented in the backslash operator for matrices) available in Matlab 7.7. Here N takes the value 228 (67% of 340 perfect match free energies measured at 25°C and 37°C), 132 (67% from 197 perfect match free energies measured at 25°C), or 96 (67% of 145 perfect match free energies measured at 37°C). The system with N equations has been extrapolated by selecting from the initial data set only the free energy measurements for perfect match DNA duplexes and counting the frequency of triplets in each duplex. Thus, for each duplex, the sum of parametric values for each triplet multiplied with its counts equals the experimental free energy. While our model is very simple and currently does not take into consideration mismatches, internal loops, and dangling ends, its strength is given by its ability to estimate perfect match DNA duplex free energies for a wide range of sodium, sequence and target concentrations and temperatures. This strength is given by the presence of a large and mixed training data set that was used to extrapolate the nearestneighbour (NN) parameters for both the doublet and the tripletbased models.
The training process for the TNNTripletsPM Model is summarized in Table 5. We first process the input set, which contains perfect match DNA sequences and their corresponding experimentally derived free energies. The processing consists of scanning each perfect match sequence from left to right by moving a window of size 3 nucleotides (or 2 for the doublets) and counting the frequency of each of the 32 unique triplets. We record each frequency at corresponding positions (i, j) in matrix F and each experimentally derived free energy is recorded at position i in matrix R. Here i represents the number of the sequence in the set and j represents the number of the triplet (from 1 to 32), whose frequency is recorded. After matrices F and R have been populated, a solution for equation 4 is computed and the value of vector X containing free energy parameters for all the unique triplets is reported.
The evaluation process of the TNNTripletsPM Model is summarized in Table 6. The evaluation process is repeated 10 000 times in this work. Each iteration consists of the following steps. First the data set is divided uniformly at random in a training set, TrS consisting of 67% of the data and a testing set, TeS that contains the remaining 33%. Next, the training process described in Table 5 is used to extrapolate the first set of perfect match triplet parameters. The derived parameters are used next to compute the Pearson momentum correlation coefficients and the RMSEs for each DNA perfect match duplex from TeS. Each correlation coefficient and RMSE is recorded in corresponding vectors to be analyzed later. The complete coverage of the triplet space, i.e. all possible triplets during the generation of training and testing sets using a randomized mechanism is not ensured for some of the 10 000 sets mostly due to the presence of a few underrepresented (less than 20 CCC/GGG) or overrepresented (more than 180 GAC/CTG) triplets that characterize the data set with perfect matches (see Figures 15 and 16). Nevertheless, we noticed that the training sets that produced the best results cover completely the triplet space. The same coverage was observed for the doublets.
We use a large number of measures of similarity between experimental and computed free energies. Some of these measures were previously used by [^{42}] to compare melting temperatures obtained with different methods and by [^{6}] to estimate model parameters for RNA secondary structure prediction. If not stated otherwise, all comparisons in this paper were done on a data set comprising 695 pairs of DNA sequences collected from 29 publications. The measures used in this study are grouped in two categories, namely:
The following measures are used for free energy estimations of the known structures, as well as free energy estimations of predicted structures.
• the observed absolute difference between experimental and estimated free energies (MFE_AD),
• the Pearson correlation coefficient (r),
• the root mean squared error (RMSE),
• the secondary structure similarity index of experimental and predicted secondary structures (SSSI)
• the prediction sensitivity for secondary structures (SENS)
• the positive predictive value for secondary structures (PPV)
• the Fmeasure for predicted secondary structures (F)
For MFE_AD, SSSI, SENS, PPV and F we report the minimum, the first quartile, the median, the mean, the third quartile, the maximum and the standard deviation.
We define the secondary structure similarity index (SSSI) for two equally long structures as follows:
where s1_{exp}, s2_{exp }are two equally long structures obtained experimentally, s1_{calc}, s2_{calc }are two equally long calculated structures, and SS(a, b) is the total number of identical characters at corresponding positions in both structures. SSSI represents the percentage of positions in which two structures agree.
Unlike similar measures that assign a +1 score for two identical base pairs in two duplex structures, SSSI assigns a +1 score for two base pairs that have either the start or the end positions identical. This mechanism allows the differentiation between duplex secondary structures that have either one (score +1) or both (score +2) bases in a base pair correctly predicted.
The sensitivity, positive predictive value and Fmeasure are defined as in [^{6}], namely:
The entire analysis of this study was done with R version 2.5.1, Perl 5.8.8 and Python 2.5. All computations were carried out on a Open SuSe 10.2 Linux (kernel version 2.6.18.2) machine equipped with a Pentium 4, 2.8 GHz processor with 1 GB of RAM.
DT and MA planned the research, collected and curated the data, and wrote the paper. SL wrote the code for results computation and collection with UNAFold and the Vienna Package. DT wrote the code for results computation and collection with MultiRNAFold and analyzed the data. All authors read and approved the final manuscript.
Data set in comma separated value. The file contains information representing the data set used in this work. The data is structured on 15 columns as follows: (col 1) first sequence of the duplex, (col 2) second sequence of the duplex, (col 3) unique duplex ID containing the first and last authors of the papers that have first published the data, (col 4) dotparenthesis notation of the secondary structure representation for the first sequence, (col 5) dotparenthesis notation of the secondary structure representation for the second sequence, (col 6) experimental free energy measurement, (col 7) measurement error for the free energy, (col 8) experimental entropy measurement, (col 9) measurement error for the entropy, (col 10) experimental enthalpy measurement, (col 11) measurement error for the enthalpy, (col 12) experimental temperature of hybridization, (col 13) concentration for selfcomplementary sequences, (col 14) concentration for non selfcomplementary sequences, (col 15) [N a] ^{+ }concentration.
Click here for additional data file (1471210511105S1.CSV)
Funding for this work was provided to DT and SL by the National Research Council of Canada. We gratefully acknowledge the helpful comments and suggestions provided by Dr. Anne Condon and Dr. Miroslava CuperlovicCulf. We thank Dr. Fazel Famili, Georges Corriveau and Natalie Hartford for proofreading our article and the anonymous reviewers of this manuscript for their valuable feedback.
References
SantaLucia J,Turner DH,Measuring the thermodynamics of RNA secondary structure formationBiopolymersYear: 199744330931910.1002/(SICI)10970282(1997)44:3<309::AIDBIP8>3.0.CO;2Z9591481  
Barbault F,HuynhDinh T,Paoletti J,Lanceloti G,A new peculiar DNA structure: NMR solution structure of a DNA kissing complexJ Biomol Struct DynYear: 200219464965811843626  
Schmidt C,Welz R,Müller S,RNA double cleavage by a hairpinderived twin ribozymeNucleic Acids ResYear: 200028488689410.1093/nar/28.4.88610648779  
Gharaibeh RZ,Fodor AA,Gibas CJ,Software note: using probe secondary structure information to enhance Affymetrix GeneChip background estimatesComput Biol ChemYear: 2007312929810.1016/j.compbiolchem.2007.02.00817387043  
Andronescu M,Zhang ZC,Condon A,Secondary structure prediction of interacting RNA moleculesJ Mol BiolYear: 20053455987100110.1016/j.jmb.2004.10.08215644199  
Andronescu M,Condon A,Hoos HH,Mathews DH,Murphy KP,Efficient parameter estimation for RNA secondary structure predictionBioinformaticsYear: 20072313192810.1093/bioinformatics/btm223  
Hofacker IL,Vienna RNA secondary structure serverNucleic Acids ResYear: 200331133429343110.1093/nar/gkg59912824340  
Markham NR,Zuker M,DINAMelt web server for nucleic acid melting predictionNucleic Acids ResYear: 200533 Web Server57758110.1093/nar/gki59115673718  
Andronescu M,Algorithms for predicting the secondary structure of pairs and combinatorial sets of nucleic acid strandsPhD thesisYear: 2003University of British Columbia, Computer Science Department  
Turner Lab, last visited: November 2008http://rna.chem.rochester.edu/  
Mathews Lab Webpage, last visited: November 2008http://rna.urmc.rochester.edu/  
SantaLucia Lab, last visited: November 2008http://ozone3.chem.wayne.edu/home/  
Zuker M,Stiegler P,Optimal computer folding of large RNA sequences using thermodynamics and auxiliary informationNucleic Acids ResYear: 1981913314810.1093/nar/9.1.1336163133  
McCaskill JS,The equilibrium partition function and base pair binding probabilities for RNA secondary structureBiopolymersYear: 199029671105111910.1002/bip.3602906211695107  
Wuchty S,Fontana W,Hofacker IL,Schuster P,Complete suboptimal folding of RNA and the stability of secondary structuresBiopolymersYear: 199949214516510.1002/(SICI)10970282(199902)49:2<145::AIDBIP4>3.0.CO;2G10070264  
Owczarzy R,Vallone PM,Goldstein RF,Benight AS,Studies of DNA dumbbells VII: evaluation of the nextnearestneighbor sequencedependent interactions in duplex DNABiopolymersYear: 199952295610.1002/(SICI)10970282(1999)52:1<29::AIDBIP2>3.0.CO;2K10737861  
Owczarzy R,Vallone PM,Gallo FJ,Paner TM,Lane MJ,Benight AS,Predicting sequencedependent melting stability of short duplex DNA oligomersBiopolymersYear: 199744321723910.1002/(SICI)10970282(1997)44:3<217::AIDBIP3>3.0.CO;2Y9591477  
SantaLucia J,A unified view of polymer, dumbbell, and oligonucleotide DNA nearestneighbor thermodynamicsProc Natl Acad Sci USAYear: 19989541460146510.1073/pnas.95.4.14609465037  
Doktycz MJ,Morris MD,Dormady SJ,Beattie KL,Jacobson KB,Optical melting of 128 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stabilityJ Biol ChemYear: 1995270158439844510.1074/jbc.270.15.84397721738  
Allawi HT,SantaLucia J,Thermodynamics of internal C.T mismatches in DNANucleic Acids ResYear: 199826112694270110.1093/nar/26.11.26949592156  
Allawi HT,SantaLucia J,Nearest neighbor thermodynamic parameters for internal G.A mismatches in DNABiochemistryYear: 19983782170217910.1021/bi97248739485363  
Leonard GA,Booth ED,Brown T,Structural and thermodynamic studies on the adenine.guanine mismatch in BDNANucleic Acids ResYear: 199018195617562310.1093/nar/18.19.56172216754  
Li Y,Zon G,Wilson WD,Thermodynamics of DNA duplexes with adjacent G.A mismatchesBiochemistryYear: 199130307566757210.1021/bi00244a0281854755  
Gotoh O,Tagashira Y,Stabilities of nearestneighbor doublets in doublehelical DNA determined by fitting calculated melting profiles to observed profilesBiopolymersYear: 1981201033104210.1002/bip.1981.360200513  
Vologodskii AV,Amirikyan BR,Lyubchenko YL,FrankKamenetskii MD,Allowance for heterogeneous stacking in the DNA helixcoil transition theoryJ Biomol Struct DynYear: 198421311486400927  
Breslauer KJ,Frank R,Blöcker H,Marky LA,Predicting DNA duplex stability from the base sequenceProc Natl Acad Sci USAYear: 198683113746375010.1073/pnas.83.11.37463459152  
Delcourt S,Blake R,Stacking energies in DNAJournal of Biological ChemistryYear: 19912662315160151691869547  
Doktycz MJ,Goldstein RF,Paner TM,Gallo FJ,Benight AS,Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearestneighbor stacking interactions in DNABiopolymersYear: 199232784986410.1002/bip.3603207121391634  
SantaLucia J,Allawi HT,Seneviratne PA,Improved nearestneighbor parameters for predicting DNA duplex stabilityBiochemistryYear: 199635113555356210.1021/bi951907q8639506  
Sugimoto N,Nakano S,Yoneyama M,Honda K,Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexesNucleic Acids ResYear: 199624224501450510.1093/nar/24.22.45018948641  
Allawi HT,SantaLucia J,Thermodynamics and NMR of internal G.T mismatches in DNABiochemistryYear: 19973634105811059410.1021/bi962590c9265640  
Aboulela F,Koh D,Jr IT,Martin FH,Basebase mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A, C, G, T)Nucleic Acids ResearchYear: 198513134811482410.1093/nar/13.13.48114022774  
Tibanyenda N,De Bruin SH,Haasnoot CA,Marel GA van der,van Boom JH,Hilbers CW,The effect of single basepair mismatches on the duplex stability of d(TATTAATATCAAGTTG). d(CAACTTGATATTAATA)Eur J BiochemYear: 1984139192710.1111/j.14321033.1984.tb07970.x6698006  
Tanaka F,Kameda A,Yamamoto M,Ohuchi A,Thermodynamic parameters based on a nearestneighbor model for DNA sequences with a singlebulge loopBiochemistryYear: 200443227143715010.1021/bi036188r15170351  
Wilson WD,Dotrong MH,Zuo ET,Zon G,Unusual duplex formation in purine rich oligodeoxyribonucleotidesNucleic Acids ResYear: 198816115137515110.1093/nar/16.11.51373387220  
Petruska J,Arnheim N,Goodman MF,Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseasesNucleic Acids ResYear: 199624111992199810.1093/nar/24.11.19928668527  
Allawi HT,SantaLucia J,Nearestneighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effectsBiochemistryYear: 199837269435944410.1021/bi98037299649326  
Sugimoto N,Tanaka A,Shintani Y,Sasaki M,DoubleHelix Melting of Octamers of Deoxyriboadenylic and Deoxyribothymidylic Acids in the Presence of EthidiumChemistry LettersYear: 19912091210.1246/cl.1991.9  
A LE,Freier SM,Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structureBiochemistryYear: 19953434108071081510.1021/bi00034a0137662660  
Nakano S,Fujimoto M,Hara H,Sugimoto N,Nucleic acid duplex stability: influence of base composition on cation effectsNucleic Acids ResYear: 199927142957296510.1093/nar/27.14.295710390539  
Seela F,Debelak H,The N(8)(2'deoxyribofuranoside) of 8aza7deazaadenine: a universal nucleoside forming specific hydrogen bonds with the four canonical DNA constituentsNucleic Acids ResYear: 200028173224323210.1093/nar/28.17.322410954589  
Panjkovich A,Melo F,Comparison of different melting temperature calculation methods for short DNA sequencesBioinformaticsYear: 200521671172210.1093/bioinformatics/bti06615501913  
Bommarito S,Peyret N,SantaLucia J,Thermodynamic parameters for DNA sequences with dangling endsNucleic Acids ResYear: 20002891929193410.1093/nar/28.9.192910756193  
Clark CL,Cecil PK,Singh D,Gray DM,CD, absorption and thermodynamic analysis of repeating dinucleotide DNA, RNA and hybrid duplexes [d/r(AC)]12.[d/r(GT/U)]12 and the influence of phosphorothioate substitutionNucleic Acids ResYear: 199725204098410510.1093/nar/25.20.40989321664  
Gelfand CA,Plum GE,Grollman AP,Johnson F,Breslauer KJ,Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequenceBiochemistryYear: 199837207321732710.1021/bi98033729585546  
LeBlanc D,Morden K,Thermodynamic characterization of deoxyribooligonucleotide duplexes containing bulgesBiochemistryYear: 199130164042404710.1021/bi00230a0312018770  
Petruska J,Goodman MF,Boosalis MS,Sowers LC,Cheong C,Tinoco I,Comparison between DNA melting thermodynamics and DNA polymerase fidelityProc Natl Acad Sci USAYear: 198885176252625610.1073/pnas.85.17.62523413095  
Peyret N,Seneviratne PA,Allawi HT,SantaLucia J,Nearestneighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatchesBiochemistryYear: 199938123468347710.1021/bi982509110090733  
Pirrung MC,Zhao X,Harris SV,A universal, photocleavable DNA base: nitropiperonyl 2'deoxyribosideJ Org ChemYear: 20016662067207110.1021/jo001594r11300902  
Plum GE,Grollman AP,Johnson F,Breslauer KJ,Influence of an exocyclic guanine adduct on the thermal stability, conformation, and melting thermodynamics of a DNA duplexBiochemistryYear: 19923148120961210210.1021/bi00163a0191457406  
Ratmeyer L,Vinayak R,Zhong YY,Zon G,Wilson WD,Sequence specific thermodynamic and structural properties for DNA.RNA duplexesBiochemistryYear: 199433175298530410.1021/bi00183a0377513557  
Sugimoto N,Honda KI,Sasaki M,Application of the thermodynamic parameters of DNA stability prediction to doublehelix formation of deoxyribooligonucleotidesNucleosides NucleotidesYear: 19941361311131710.1080/15257779408012153  
Wu P,Nakano S,Sugimoto N,Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formationEur J BiochemYear: 2002269122821283010.1046/j.14321033.2002.02970.x12071944 
Figures
Tables
Summary of features for the data sets used in this study
Set  Num. duplexes  Seq. len.  T [C]  [Na]^{+ }[M]  Seq. conc. [M] 

Aboulela et al. [^{32}]  34  16  25, 50  1  [11e6,440e6] 
Allawi et al.1 [^{37}]  24  9  12  37  1  1e4 
Allawi et al.2 [^{20}]  28  9  14  37  1  1e4 
Allawi et al.3 [^{21}]  22  9  14  37  1  1e4 
Bommarito et al. [^{43}]  37  8  9  37  1  n.r. 
Breslauer et al. [^{26}]  12  6  16  25  1  n.r. 
Clark et al. [^{44}]  1  24  37  0.15  2.5e6 
Doktycz et al. [^{19}]  140  8  25  1  2e6 
Gelfand et al. [^{45}]  4  13  25  1  5e5 
LeBlanc et al. [^{46}]  7  10  11  25  1  5e5 
Leonard et al. [^{22}]  5  12  25  1  4e4 
Lesnik et al. [^{39}]  14  8  21  37  0.1  4e6 
Li et al. [^{23}]  12  8  10  25  1  6.1e6 
Nakano et al. [^{40}]  21  6  14  37  0.1  8e6 
Petruska et al.1 [^{47}]  4  9  37  n.r.  n.r. 
Petruska et al.2 [^{36}]  2  30  37  0.17  1e4 
Peyret et al. [^{48}]  52  9  12  37  1  1e4 
Pirrung et al. [^{49}]  2  25  25  0.1  1e6 
Plum et al. [^{50}]  2  13  25  1  6e6 
Ratmeyer et al. [^{51}]  2  12  37  1  6e6 
SantaLucia et al.1 [^{29}]  23  4  16  37  1  4e4 
SantaLucia et al.2 [^{29}]  10  12  24.85  1  5e6 
Sugimoto et al.1 [^{30}]  50  5  14  37  1  5e6 
Sugimoto et al.2 [^{38}]  1  8  37  n.r.  1e4 
Sugimoto et al.3 [^{52}]  8  6  8  37  1  n.r. 
Tanaka et al. [^{34}]  126  12  25  37  1  5e5 
Tibanyenda et al. [^{33}]  3  16  24.85  1  17.5e6 
Wilson et al. [^{35}]  3  11  25  0.4  n.r. 
Wu et al. [^{53}]  48  5  11  25, 37  1  1e4 
TOTAL:  695 
Each data set has the following characteristics: the number of sequence pairs (Num. duplexes), the length of the sequences (Seq. len), the experimental temperature measured in degrees Celsius for estimating free energies (T), the sodium concentration measured in molar units ([Na]^{+})and the sequence concentration (Seq. conc). The set of 695 DNA duplexes contains: (i) 143 perfect match free energies measured at a temperature of 37°C and a sodium concentration of 1 M, (ii) 197 perfect match duplexes measured at a temperature of 25°C and a sodium concentration of 1 M, (iii) 7 perfect match duplexes measured at a temperature of 50°C and a sodium concentration of 1 M, and (iv) 348 duplexes with mismatches measured at various temperatures and sodium concentrations. Note: n.r. denotes values that have not been reported in the original documents.
Summary of results for free energy measurements obtained with EVALSS methods.
Method  Stats  MFE_AD [kcal/mol]  Pearson coeff. (r)  SSSI  Sens.  PPV  Fmeasure  

MultiRNAFold  min  0.000  0.7565  4.35  40.00  0.1667  1  0.2857 
(Mathews)  q1  0.340  100.00  1.0000  1  1.0000  
median  0.860  100.00  1.0000  1  1.0000  
mean  2.681  95.83  0.9547  1  0.9711  
q3  3.590  100.00  1.0000  1  1.0000  
max  18.400  100.00  1.0000  1  1.0000  
stddev  3.429  10.56  0.1224  0  0.09236  
MultiRNAFold  min  0.000  0.7663  4.131  40.00  0.1667  1  0.2857 
(SantaLucia)  q1  0.330  100.00  1.0000  1  1.0000  
median  0.720  100.00  1.0000  1  1.0000  
mean  2.528  96.44  0.9608  1  0.9747  
q3  3.510  100.00  1.0000  1  1.0000  
max  17.200  100.00  1.0000  1  1.0000  
stddev  3.269  10.23  0.1189  0  0.08966  
min  0.000  0.7660  3.992  40.00  0.1667  1  0.2857  
q1  0.256  100.00  1.0000  1  1.0000  
median  0.630  100.00  1.0000  1  1.0000  
UNAFold  mean  2.374  96.08  0.9571  1  0.9724  
q3  3.016  100.00  1.0000  1  1.0000  
max  11.880  100.00  1.0000  1  1.0000  
stddev  3.212  10.66  0.1231  0  0.09234  
Vienna  min  0.010  0.7630  3.667  5.882  0.0000  0.0000  0.0000 
Package  q1  1.700  100.000  1.0000  1.0000  1.0000  
median  2.330  100.000  1.0000  1.0000  1.0000  
mean  3.025  95.210  0.9467  0.9856  0.9616  
q3  3.935  100.000  1.0000  1.0000  1.0000  
max  15.400  100.000  1.0000  1.0000  1.0000  
stddev  2.075  13.74  0.1581  0.1192  0.1387 
Summary of results for free energy measurements obtained with EVALSS methods. The pvalues for the Pearson correlation test were less than 2.2e16 in all cases.
Summary of results for free energy measurements obtained with EVALFE methods.
Method  Statistics  MFE_AD [kcal/mol]  Pearson coeff. (r)  RMSE 

MultiRNAFold  min  0.0000  0.7352  4.418 
(Mathews)  q1  0.300  
median  0.800  
mean  2.672  
q3  3.395  
max  18.400  
stddev  3.521  
MultiRNAFold  min  0.0000  0.7456  4.223 
(SantaLucia)  q1  0.330  
median  0.680  
mean  2.553  
q3  3.390  
max  17.200  
stddev  3.367  
min  0.0000  0.7434  4.101  
q1  0.2528  
median  0.6128  
UNAFold  mean  2.4110  
q3  2.9970  
max  13.0000  
stddev  3.319  
Vienna  min  0.0000  0.7413  3.876 
Package  q1  1.820  
median  2.440  
mean  3.167  
q3  3.965  
max  15.400  
stddev  2.236 
Summary of results for free energy measurements obtained with EVALFE methods. The pvalues for the Pearson correlation test were less than 2.2e16 in all cases.
Estimated free energy parameters
ID  Doublet  [kcal/mol]  Counts  ID  Doublet  [kcal/mol]  Counts 

1.  AA/TT  0.838948  84  6.  CC/GG  1.698997  74 
2.  AC/TG  1.394988  102  7.  CG/GC  0.967002  106 
3.  AG/TC  1.323547  102  8.  GA/CT  0.938327  101 
4.  AT/TA  0.375235  130  9.  GC/CG  0.711466  126 
5.  CA/GT  1.406794  95  10.  TA/AT  0.144092  136 
ID  Triplet  [kcal/mol]  Counts  ID  Triplet  [kcal/mol]  Counts 
1.  AAA/TTT  0.844597  10  17.  CAG/GTC  1.625284  23 
2.  AAC/TTG  1.841904  19  18.  CCA/GGT  1.568813  18 
3.  AAG/TTC  1.201194  17  19.  CCC/GGG  2.396507  17 
4.  AAT/TTA  0.991596  19  20.  CCG/GGC  1.888906  22 
5.  ACA/TGT  1.121939  20  21.  CGA/GCT  1.668273  19 
6.  ACC/TGG  1.793995  23  22.  CGC/GCG  2.195726  23 
7.  ACG/TGC  1.615048  30  23.  CTA/GAT  0.871636  40 
8.  ACT/TGA  0.781693  23  24.  CTC/GAG  1.198450  16 
9.  AGA/TCT  1.103536  15  25.  GAA/CTT  1.317278  18 
10.  AGC/TCG  1.528461  36  26.  GAC/CTG  1.498999  29 
11.  AGG/TCC  1.323278  18  27.  GCA/CGT  1.454430  21 
12.  ATA/TAT  0.562379  46  28.  GCC/CGG  1.973081  24 
13.  ATC/TAG  1.157521  29  29.  GGA/CCT  1.696158  20 
14.  ATG/TAC  1.263601  26  30.  GTA/CAT  1.158422  32 
15.  CAA/GTT  0.988509  16  31.  TAA/ATT  0.519499  27 
16.  CAC/GTG  2.088824  17  32.  TCA/AGT  1.042342  19 
Estimated free energy parameters for unique DNA NN doublets and triplets and their corresponding counts of appearance in the perfect match data set. All parameters have been estimated using experimental values measured at 37°C and 1 M sodium concentration.
Model training
Require: A thermodynamic model T, an input set S with perfect match DNA duplexes. 
Ensure: An optimal set of thermodynamic DNA parameters X for the input model 
1: Initialize counts matrix F with zeros for all unique doublets/triplets 
2: Initialize results matrix R with experimentally approximated free energies for each duplex 
3: for i = 0 to S do 
4: Count unique doublets/triplets in duplex S[i] and update F 
5: end for 
6: Solve the equation X = arg min_{X }(F × X R)^{2} 
7: return X 
Model evaluation
Require: A thermodynamic model T, an input set S with perfect match DNA duplexes. 
Ensure: Vectors of Pearson correlations ( ) and root mean square errors ( ) for all duplexes. 
1: Initialize correlations vector 
2: Initialize root mean square errors vector 
3: for i = 0 to 10 000 do 
4: Training set TrS = 67% of randomly chosen data from S 
5: Testing set TeS = remaining 33% of data from S 
6: Train model T on data in TrS 
7: Compute r and RMSE for each data point in TeS 
8: 
9: 
10: end for 
11: return vectors and 
Article Categories:

Previous Document: Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes.
Next Document: Flux of transcript patterns during soybean seed development.