Document Detail


Force modulated conductance of artificial coiled-coil protein monolayers.
MedLine Citation:
PMID:  23335171     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment. Protein monolayers uniaxially oriented at an angle of ∼ 30° with respect to the surface normal were prepared. Current voltage measurements, obtained using conductive-probe atomic force microscopy, revealed the mechano-electronic behavior of the protein films. It was found that the low voltage conductance of the protein monolayer increases linearly with applied force, mainly due to increase in the tip contact area. Negligible compression of the films for loads below 26 nN allowed estimating a tunneling attenuation factor, β(0) , of 0.5-0.6 Å(-1) , which is akin to charge transfer by tunneling mechanism, despite the comparably large charge transport distance. These studies show that mechano-electronic behavior of proteins can shed light on their complex charge transport mechanisms, and on how these mechanisms depend on the detailed structure of the proteins. Such studies may provide insightful information on charge transfer in biological systems. © 2012 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 100: 93-99, 2013.
Authors:
Alexander Atanassov; Ziv Hendler; Inbal Berkovich; Gonen Ashkenasy; Nurit Ashkenasy
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Biopolymers     Volume:  100     ISSN:  0006-3525     ISO Abbreviation:  Biopolymers     Publication Date:  2013 Apr 
Date Detail:
Created Date:  2013-01-21     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0372525     Medline TA:  Biopolymers     Country:  United States    
Other Details:
Languages:  eng     Pagination:  93-9     Citation Subset:  IM    
Copyright Information:
Copyright © 2012 Wiley Periodicals, Inc.
Affiliation:
Department of Materials Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Reviewprobing protein electron transfer mechanisms from the molecular to the cellular length scales.
Next Document:  Review pathway analysis for peptide-mediated electronic coupling in the super-exchange mechanism of ...