Document Detail


Fluorescence in situ hybridization techniques for cytogenetic and genomic analyses.
MedLine Citation:
PMID:  23135841     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
Fluorescent in situ hybridization (FISH) is a powerful method to visualize DNA sequences in the context of the whole chromosome. Yet despite the value of FISH analysis for cytogenetic studies, there are surprisingly few labs that are able to adapt the technique for their experiments in chromosomal and genome biology. Here we present a comprehensive FISH protocol acquired from over 20 years of collective experience using different plant species. Our description uses rice as a model for performing a complete FISH procedure, but the protocol can be readily adapted for other plant species. We have provided more specialized instruction beyond routine FISH, which includes the preparation of meiotic and mitotic samples suitable for FISH analysis, procedures for direct and indirect labeling of DNA probes, and techniques for increasing signal strength using layers of antibodies.
Authors:
Jason G Walling; Wenli Zhang; Jiming Jiang
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Methods in molecular biology (Clifton, N.J.)     Volume:  956     ISSN:  1940-6029     ISO Abbreviation:  Methods Mol. Biol.     Publication Date:  2013  
Date Detail:
Created Date:  2012-11-08     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  9214969     Medline TA:  Methods Mol Biol     Country:  United States    
Other Details:
Languages:  eng     Pagination:  13-27     Citation Subset:  IM    
Affiliation:
Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Rice artificial hybridization for genetic analysis.
Next Document:  Generation of rice mutants by chemical mutagenesis.