Document Detail

Fluid mixing by curved trajectories of microswimmers.
MedLine Citation:
PMID:  24237566     Owner:  NLM     Status:  In-Data-Review    
We consider the tracer diffusion D_{rr} that arises from the run-and-tumble motion of low Reynolds number swimmers, such as bacteria. Assuming a dilute suspension, where the bacteria move in uncorrelated runs of length λ, we obtain an exact expression for D_{rr} for dipolar swimmers in three dimensions, hence explaining the surprising result that this is independent of λ. We compare D_{rr} to the contribution to tracer diffusion from entrainment.
Dmitri O Pushkin; Julia M Yeomans
Related Documents :
23803876 - Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative ener...
21606036 - Period coded phase shifting strategy for real-time 3-d structured light illumination.
22175006 - Accuracy of intensity and inclinometer output of three activity monitors for identifica...
21728566 - Bistability and resonance in the periodically stimulated hodgkin-huxley model with noise.
16660006 - Development of ribulose-1,5-diphosphate carboxylase in castor bean cotyledons.
20853236 - Tips for better visual elements in posters and podium presentations.
Publication Detail:
Type:  Journal Article     Date:  2013-10-31
Journal Detail:
Title:  Physical review letters     Volume:  111     ISSN:  1079-7114     ISO Abbreviation:  Phys. Rev. Lett.     Publication Date:  2013 Nov 
Date Detail:
Created Date:  2013-11-18     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0401141     Medline TA:  Phys Rev Lett     Country:  United States    
Other Details:
Languages:  eng     Pagination:  188101     Citation Subset:  IM    
The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Patchy particle model for vitrimers.
Next Document:  Geometrical optics of dense aerosols: forming dense plasma slabs.