Document Detail

Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial β-oxidation.
MedLine Citation:
PMID:  22386881     Owner:  NLM     Status:  Publisher    
While metformin has been widely used to treat type 2 diabetes for the last fifty years, its mode of action remains unclear. Hence, we investigated the short-term alterations in energy metabolism caused by metformin administration in 3T3-L1 adipocytes. We found that metformin inhibited mitochondrial respiration, although ATP levels remained constant as the decrease in mitochondrial production was compensated by an increase in glycolysis. While AMP/ATP ratios were unaffected by metformin, phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase augmented. The inhibition of respiration provoked a rapid and sustained increase in superoxide levels, despite the increase in UCP2 and superoxide dismutase (SOD) activity. The inhibition of respiration was rapidly reversed by fatty acids and thus respiration was lower in treated cells in the presence of pyruvate and glucose while rates were identical to control cells when palmitate was the substrate. We conclude that metformin reversibly inhibits mitochondrial respiration, it rapidly activates AMPK without altering the energy charge, and it inhibits fatty acid synthesis. Mitochondrial β-oxidation is facilitated by reversing the inhibition of complex I and, presumably, by releasing the inhibition of carnitine palmitoyltransferase. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
M Mar González-Barroso; Andrea Anedda; Eunate Gallardo-Vara; Mariano Redondo-Horcajo; Leonor Rodríguez-Sánchez; Eduardo Rial
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-2-23
Journal Detail:
Title:  Biochimica et biophysica acta     Volume:  -     ISSN:  0006-3002     ISO Abbreviation:  -     Publication Date:  2012 Feb 
Date Detail:
Created Date:  2012-3-5     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0217513     Medline TA:  Biochim Biophys Acta     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
Copyright © 2012. Published by Elsevier B.V.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Attentional control: temporal relationships within the fronto-parietal network.
Next Document:  The coupling mechanism of respiratory complex I - a structural and evolutionary perspective.