Document Detail


Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant.
MedLine Citation:
PMID:  25007732     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
A facile and "green" method was proposed to introduce Ag nanoparticles (Ag NPs) into the hierarchically monolithic silica uniformly in the presence of (3-aminopropyl)-triethoxysilane (APTES) and ethylene glycol. APTES is used to modify the monolith by incorporating amino groups onto the surface of meso-macroporous skeletons, while ethylene glycol is employed as the productive reductant. Ag NPs are homogeneously immobilized in hierarchically monolithic silica after reduction and drying at 40 °C for different duration times, and the embedded amount of Ag NPs can reach 15.44 wt% when treated once. The embedment of Ag NPs increases with the repeat treatment and the APTES amount, without uncontrollable crystalline growth. The surface areas of Ag NPs embedded in silica monoliths after heat treatment at 300 and 400 °C are higher than those before heat treatment. The modification via APTES and the embedment of Ag NPs does not spoil the morphology of monolithic silica, while changing the pore structures of the monolith. A tentative formation process and a reduction mechanism are proposed for the modification, reduction and embedment. Ag NPs embedded in monolithic silica is promising for wide applications such as catalysis and separation.
Authors:
Huan Yu; Yang Zhu; Hui Yang; Kazuki Nakanishi; Kazuyoshi Kanamori; Xingzhong Guo
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-7-10
Journal Detail:
Title:  Dalton transactions (Cambridge, England : 2003)     Volume:  -     ISSN:  1477-9234     ISO Abbreviation:  Dalton Trans     Publication Date:  2014 Jul 
Date Detail:
Created Date:  2014-7-10     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101176026     Medline TA:  Dalton Trans     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Abrasive wear and surface roughness of contemporary dental composite resin.
Next Document:  Serious mental illness and the role of primary care.