Document Detail


Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats.
MedLine Citation:
PMID:  23129090     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Decompression sickness is initiated by gas bubbles formed during decompression, and it has been generally accepted that exercise before decompression causes increased bubble formation. There are indications that exercise-induced muscle injury seems to be involved. Trauma-induced skeletal muscle injury and vigorous exercise that could theoretically injure muscle tissues before decompression have each been shown to result in profuse bubble formation. Based on these findings, we hypothesized that exercise-induced skeletal muscle injury prior to decompression from diving would cause increase of vascular bubbles and lower survival rates after decompression. In this study, we examined muscle injury caused by eccentric exercise in rats prior to simulated diving and we observed the resulting bubble formation. Female Sprague-Dawley rats (n = 42) ran downhill (-16º) for 100 min on a treadmill followed by 90 min rest before a 50-min simulated saturation dive (709 kPa) in a pressure chamber. Muscle injury was evaluated by immunohistochemistry and qPCR, and vascular bubbles after diving were detected by ultrasonic imaging. The exercise protocol resulted in increased mRNA expression of markers of muscle injury; αB-crystallin, NF-κB, and TNF-α, and myofibrillar disruption with preserved sarcolemmal integrity. Despite evident myofibrillar disruption after eccentric exercise, no differences in bubble amounts or survival rates were observed in the exercised animals as compared to non-exercised animals after diving, a novel finding that may be applicable to humans.
Authors:
Arve Jørgensen; Philip P Foster; Ingrid Eftedal; Ulrik Wisløff; Gøran Paulsen; Marianne B Havnes; Alf O Brubakk
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2012-11-6
Journal Detail:
Title:  European journal of applied physiology     Volume:  -     ISSN:  1439-6327     ISO Abbreviation:  Eur. J. Appl. Physiol.     Publication Date:  2012 Nov 
Date Detail:
Created Date:  2012-11-6     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  100954790     Medline TA:  Eur J Appl Physiol     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Affiliation:
Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway, arve.jorgensen@ntnu.no.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Low total haemoglobin mass, blood volume and aerobic capacity in men with type 1 diabetes.
Next Document:  Delphinidin Induces Autolysosome as well as Autophagosome Formation and Delphinidin-Induced Autophag...