Document Detail


Exercise-induced Dehydration Does not Alter Time Trial or Neuromuscular Performance.
MedLine Citation:
PMID:  24577860     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
This study examined the effect of exercise-induced dehydration by ~4% body mass loss on 5-km cycling time trial (TT) performance and neuromuscular drive, independent of hyperthermia. 7 active males were dehydrated on 2 occasions, separated by 7 d. Participants remained dehydrated (DEH, -3.8±0.5%) or were rehydrated (REH, 0.2±0.6%) over 2 h before completing the TT at 18-25 °C, 20-30% relative humidity. Neuromuscular function was determined before dehydration and immediately prior the TT. The TT started at the same core temperature (DEH, 37.3±0.3°C; REH, 37.0±0.2 °C (P>0.05). Neither TT performance (DEH, 7.31±1.5 min; REH, 7.10±1.3 min (P>0.05)) or % voluntary activation were affected by dehydration (DEH, 88.7±6.4%; REH, 90.6±6.1% (P>0.05)). Quadriceps peak torque was significantly elevated in both trials prior to the TT (P<0.05), while a 19% increase in the rate of potentiated peak twitch torque development (P<0.05) was observed in the DEH trial only. All other neuromuscular measures were similar between trials. Short duration TT performance and neuromuscular function are not reduced by dehydration, independent of hyperthermia.
Authors:
C J Stewart; D G Whyte; J Cannon; J Wickham; F E Marino
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-2-27
Journal Detail:
Title:  International journal of sports medicine     Volume:  -     ISSN:  1439-3964     ISO Abbreviation:  Int J Sports Med     Publication Date:  2014 Feb 
Date Detail:
Created Date:  2014-2-28     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  8008349     Medline TA:  Int J Sports Med     Country:  -    
Other Details:
Languages:  ENG     Pagination:  -     Citation Subset:  -    
Copyright Information:
© Georg Thieme Verlag KG Stuttgart · New York.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Slower Nerve Conduction Velocity in Individuals with Functional Ankle Instability.
Next Document:  The Reliability and Adaptive Responses of Gross Efficiency in Hot Ambient Conditions.