Document Detail


Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.
MedLine Citation:
PMID:  23274821     Owner:  NLM     Status:  In-Data-Review    
Abstract/OtherAbstract:
ABSTRACT: A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.
Authors:
Eric Glassford; Henry Spitz; Megan Lobaugh; Grant Spitler; Paul Succop; Carol Rice
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Health physics     Volume:  104     ISSN:  1538-5159     ISO Abbreviation:  Health Phys     Publication Date:  2013 Feb 
Date Detail:
Created Date:  2012-12-31     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  2985093R     Medline TA:  Health Phys     Country:  United States    
Other Details:
Languages:  eng     Pagination:  179-88     Citation Subset:  IM    
Affiliation:
*University of Cincinnati, Department of Environmental Health; and †College of Engineering and Applied Sciences, 598 Rhodes Hall, Cincinnati, Ohio 45221-0072.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Uncertainty of 222Rn Concentrations in the Usepa Radiation and Indoor Environments National Laborato...
Next Document:  Deposition in chiba prefecture, Japan, of fukushima daiichi nuclear power plant fallout.