Document Detail

Evaluating intra-abdominal pressures in a porcine model of acute lung injury by using a wireless motility capsule.
Jump to Full Text
MedLine Citation:
PMID:  22534697     Owner:  NLM     Status:  MEDLINE    
Abstract/OtherAbstract:
BACKGROUND: Intra-vesical pressure measurement as the reference standard for assessing intra-abdominal pressures is mainly indirect and discontinuous. We therefore evaluated a motility capsule for continuous intra-abdominal pressure measurement in an animal model with a high probability for capillary leakage and intestinal edema.
MATERIAL/METHODS: Motility capsules were inserted into the stomachs of 8 anesthetized and ventilated pigs. Stomach pH, pressure, and temperature data were wirelessly transmitted to a recorder attached to each animal's abdomen. Intra-gastric pressures measured by the capsule were compared to intra-vesical pressures measured by a pressure transducer system.
RESULTS: The intra-abdominal pressures ranged from 3 to 15 mmHg (7.8 ± 2.4 mmHg [mean ± SD]) measured via the bladder. The capsule pressure recordings ranged from 1 to 3 mmHg (1.7 ± 0.5 mmHg [mean ± SD]). Bland-Altman analysis revealed an unacceptable bias between the 2 methods. The test bias was 6.2 (± 1.4) mmHg and the limits of agreement were from 3.3 to 8.9 mmHg.
CONCLUSIONS: Pressures in the stomach as measured by motility capsule underestimated the intra-vesical pressures. Discrepancies between gastric and intra-vesical pressures could be caused by gastric dilatation or different position of the 2 devices to the zero reference point.
Authors:
Stefan Rauch; Amelie Johannes; Bernd Zollhöfer; Ralf M Muellenbach
Related Documents :
7894637 - Multistep measurement of plantar pressure alterations using metatarsal pads.
3597457 - The influence of foot position on standing balance.
23503827 - Impact on hypertension reclassification by ambulatory blood pressure monitoring (abpm) ...
8364847 - The emed system of foot pressure analysis.
23244357 - Treatment of isolated systolic hypertension in the elderly.
9467327 - Doppler grid surface scanning applications for pulmonary subsurface parenchymal perfusi...
Publication Detail:
Type:  Journal Article    
Journal Detail:
Title:  Medical science monitor : international medical journal of experimental and clinical research     Volume:  18     ISSN:  1643-3750     ISO Abbreviation:  Med. Sci. Monit.     Publication Date:  2012 May 
Date Detail:
Created Date:  2012-04-26     Completed Date:  2012-09-06     Revised Date:  2013-06-25    
Medline Journal Info:
Nlm Unique ID:  9609063     Medline TA:  Med Sci Monit     Country:  Poland    
Other Details:
Languages:  eng     Pagination:  BR163-6     Citation Subset:  IM    
Affiliation:
Department of Anesthesiology, University of Würzburg, Würzburg, Germany. rauch_s@klinik.uni-wuerzburg.de
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:
Abdominal Cavity*
Acute Lung Injury / physiopathology*
Animals
Capsules*
Disease Models, Animal
Female
Pressure*
Radio Waves*
Swine
Telemetry / instrumentation*
Chemical
Reg. No./Substance:
0/Capsules
Comments/Corrections

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Full Text
Journal Information
Journal ID (nlm-ta): Med Sci Monit
Journal ID (iso-abbrev): Med. Sci. Monit
Journal ID (publisher-id): Medical Science Monitor
ISSN: 1234-1010
ISSN: 1643-3750
Publisher: International Scientific Literature, Inc.
Article Information
Download PDF
© Med Sci Monit, 2012
License:
Received Day: 01 Month: 8 Year: 2011
Accepted Day: 11 Month: 1 Year: 2012
collection publication date: Year: 2012
Electronic publication date: Day: 01 Month: 5 Year: 2012
Volume: 18 Issue: 5
First Page: BR163 Last Page: BR166
PubMed Id: 22534697
ID: 3560632
Publisher Id: 882724

Evaluating intra-abdominal pressures in a porcine model of acute lung injury by using a wireless motility capsule
Stefan Rauch12ABCDEF
Amélie Johannes3BDF
Bernd Zollhöfer4BDF
Ralf M. Muellenbach5BDF
1Department of Anesthesiology, University of Würzburg, Würzburg, Germany
2Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, U.S.A.
3Department of Anesthesiology, University of Würzburg, Würzburg, Germany
4Department of Anesthesiology, University of Würzburg, Würzburg, Germany
5Department of Anesthesiology, University of Würzburg, Würzburg, Germany
Correspondence: Stefan Rauch, Department of Anesthesiology, University of Würzburg, Oberdürrbacher 6 St., 97080 Würzburg, Germany, e-mail: rauch_s@klinik.uni-wuerzburg.de
AStudy Design
BData Collection
CStatistical Analysis
DData Interpretation
EManuscript Preparation
FLiterature Search
GFunds Collection

Background

Intra-abdominal hypertension has become a widely known complication that is associated with increased morbidity and mortality [1,2]. It can lead to decreased abdominal perfusion pressure with inadequate renal perfusion and subsequently to intra-abdominal pressure-induced renal failure. The clinical reference standard for assessing intra-abdominal pressure is the intermittently measured bladder pressure via Foley catheter [3,4]. A newly developed motility capsule (Figure 1) for assessing gastric emptying and colon motility in patients with suspected gastroparesis and constipation has been available since 2006 [511]. It is a wireless capsule that transmits pH, pressure, and temperature data to a recorder. A potential application for the motility capsule is the continuous monitoring of intra-abdominal pressures in critically ill patients. We therefore compared the intra-gastric pressures of the motility capsule with the intra-vesical pressures in a large animal model of acute lung injury over 24 hours. Specifically, we tested the hypothesis that the 2 devices show sufficient agreement to be used interchangeably.


Material and Methods

This experimental study was approved by the Laboratory Animal Care and Use Committee of the District of Unterfranken, Germany and adhered to the NIH guidelines for ethical animal research. The experiments were part of a study investigating different ventilation strategies in a large animal model of ARDS that has been validated and recently published [12]. The experiment was performed on 8 healthy female Pietrain pigs (54±4 kg) over 24 hours. Shortly after intramuscular premedication with ketamine (10 mg/kg), an intravenous line was obtained and the animals were anesthetized with continuous infusion of 5–10 mg/kg thiopental and 0.01 mg/kg/h fentanyl throughout the experiment. They were paralyzed by continuous infusion of 0.1 mg/kg/h pancuronium. The trachea was intubated with a cuffed 8.5 mm ID endotracheal tube (Rüschelit®, Rüsch, Kernen, Germany). Severe ARDS was induced by bilateral pulmonary lavages with 30 mL/kg isotonic saline (38°C), repeated every 10 minutes until PaO2 decreased to less than 60 mmHg and remained stable for 60 minutes with unchanged ventilator settings. An average of 7±2 lavages with approximately 12.000 mL saline per animal was necessary for ARDS induction. The lungs were ventilated with low tidal volumes (4–6 mL kg body weight). PEEP levels were maintained at around 25 cmH2O. All animals were placed in a supine position (Figure 2). Baseline measurements were done after an equilibration period of 1 hour. Thereafter, pressure readings were recorded simultaneously every hour. The recordings from the capsule and the urinary bladder were synchronized by setting time marks on the data recorder and on the pressure recording of the monitor at the same time. It was assured that the intra-vesical measurement worked adequately by observing a change of pressure level in synchronicity with respiration. All pressure recordings were done during expiration. A total of 192 pressure measurement pairs were recorded over 24 hours. The animals were sacrificed after 24 hours per protocol.

Continuous intra-gastric pressure measurement (motility capsule)

A pH, pressure and temperature sensing capsule (SmartPill™, SmartPill Corp., Buffalo, NY) (Figure 1) was positioned endoscopically with a capsule delivery device (AdvanCE™, US Endoscopy, Mentor, OH) into the corpus of the stomach. The capsule measures 13 by 30 mm and has a relatively soft body consisting of polyurethane. The capsule data were transmitted wirelessly to a recorder attached to the abdomen. MotiliGI software (MotiliGI 1.3.1, SmartPill, Inc.) was used to calculate intra-gastric pressures (Figure 3).

Intermittent intra-vesical pressure measurement (AbViser Autovalve®)

A suprapubic bladder catheter was placed under ultrasound guidance. It was connected to the AbViser Autovalve® (Wolf Tory Medical, Inc., USA) intra-abdominal pressure monitoring device to record intra-vesical pressures. The pressure transducer was levelled to the upper edge of the symphysis, which served as the reference height for the measurements. According to the guidelines, an intra-vesical instillation volume of 25 mL was chosen (Figure 4).

Statistical analysis

Demographic results are expressed as means ± standard deviations (SD) or counts. Pressures are characterized as means ±SDs and ranges. Intra-vesical measurement of intra-abdominal pressures (IAP) was regarded as the clinical reference standard and intra-gastric measurements as the method of comparison. The mean value of each animal over 24 hours was used in a Bland-Altman assessment for agreement to compare the 2 methods. The bias was defined as mean difference between 2 measurements. A range of agreement was defined as mean bias ±1.96 SD. The precision was defined as the standard deviation of the bias. The method was considered acceptable if the bias did not exceed 1 mmHg and the precision was not greater than 2 mmHg. The cut-offs for acceptable bias have been determined and published in recommendations for research from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. Analysis was conducted with SAS 9.1.3 (The SAS institute, Cary, NC).


Results

The intra-gastric pressure recordings ranged from 1 to 3 mmHg (1.7±0.5 mmHg [mean ±SD]). The intra-vesical measurements ranged from 3 to 15 mmHg (7.8±2.4 mmHg [mean ±SD]). The test bias was 6.2 (±1.4) mmHg and the limits of agreement were from 3.3 to 8.9 mmHg. The precision was 1.4 mmHg. The 2 methods were precise enough but the Bland-Altman analysis revealed an unacceptable (too large) bias between the 2 methods (Figure 5). Intra-gastric pressure readings were on average lower than those obtained by the intra-vesical method.

The mean fluid intake was 7.5±1.3 L, 140 mL per kg body weight, respectively. The fluid balance was positive with 6.2±0.9 L, 110 mL per kg body weight.

The capsules remained in the stomach during the entire study period of approximately 24 hours in all 8 cases and the location was confirmed by autopsy. All animals had ascites and a bloated stomach, confirmed by autopsy as well.


Discussion

Increased intra-abdominal pressures are a well-known problem in critically ill patients. Different animal models have been designed to simulate abdominal compartment syndrome and were summarized in a recent review article [13]. The porcine model is considered to be close to humans due to comparable size and physiology. Most of the animal models for intra-abdominal pressure research under the condition of pneumoperitoneum, intra-abdominal fluid instillation or bag inflation do not reflect the clinical situation of organ dysfunction. Following the recommendation for research on intra-abdominal hypertension, we have chosen a different animal model with at least 2 risk factors for increased intra-abdominal pressures, namely high fluid intake, organ failure and ventilation with high PEEP levels [14]. This “pathological” model has a high probability for capillary leakage and intestinal edema.

Apart from those research models, different methods and locations have been reported to measure intra-abdominal pressures in humans and animals [13,] [15,] [16]. The current standardized technique for intra-abdominal pressure monitoring is the intermittent intra-vesical pressure measurement with an instillation volume of 25 mL [3].

Schachtrupp et al. evaluated 2 different techniques for direct and continuous measurement of intra-abdominal pressures. They compared a piezoresistive and water-capsule technique in a porcine model [17]. Although the water-capsule pressure readings systematically underestimated the intra-abdominal pressures, both methods were more precise than intermittent intra-vesical measurements. A disadvantage is that the probes have to be placed surgically into the abdominal cavity, with the risks of infection and probe fragmentation.

Becker et al. measured intra-abdominal pressures in cirrhotic patients using a nasogastric tube with an intra-gastric balloon [18]. They compared the continuous measurements from the balloon-tipped probe with the direct intra-peritoneal measurements in 10 patients with ascites who underwent an intermittent paracentesis. Although it has been shown that the device offers reliable measurements of pressures, with a bias of −0.2 (±0.4) cmH2O, corresponding to an error of 5.9% in an in vitro model, the authors could not further confirm the results with their study [19]. Intra-gastric measurements of intra-abdominal pressures were not precise enough, with a test bias and limits of agreement of −4.9 (±6.8) mmHg. The study from Davis et al. in children and Collee et al. in adults found better agreement between intra-peritoneal or urinary bladder and intra-gastric pressure measurements [20,21]. Our results are thus generally consistent with previous work suggesting that intra-gastric pressure measurements do not consistently correlate well with intra-vesical pressure measurements, depending on the applied technique.

Our study is limited by the fact that this is not an established animal model for evaluating intra-abdominal pressures and we only investigated the natural course of the intra-abdominal pressures due to high fluid intake and organ failure. Although 50% of our pressure values exceed 12 mmHg, we did not reach intra-abdominal pressures above 20 mmHg. We only measured intra-abdominal pressures for 24 hours; therefore, we can only speculate about the course of intra-abdominal pressures later in the critical illness. We also did not perform any intervention to increase and control the intra-abdominal pressure up to abdominal compartment levels. It would also be helpful if we had validated a priori the capsule pressures in a static model (eg, a water tank with the height of the water column) as a reference.


Conclusions

Our results indicate that intra-gastric pressures underestimate the intra-vesical pressures in this large animal model with Pietrain pigs. The discrepancies between gastric and intra-vesical pressures could be caused by gastric dilatation leading to inadequately conveying pressures to the capsule, with false low readings or different positions of the 2 devices to the zero reference point. Pigs are known to be susceptible to acute severe gastric dilatation under stressful situations, which can be a cause of sudden death. Therefore, it is rather the location than the devices that leads to the insufficient agreement. Future studies must address the concern that we did not apply controlled pressures in a range to achieve abdominal compartment syndrome. We also need to evaluate the usefulness of motility capsules in detecting intra-abdominal hypertension and guiding treatment in the clinical setting.


Notes

fn8-medscimonit-18-5-br163Conflict of interest

None of the authors has a personal financial interest related to this research.

fn9-medscimonit-18-5-br163Source of support: Departmental funds

References
1. Malbrain ML,Chiumello D,Pelosi P,et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological studyCrit Care MedYear: 20053323152215699833
2. Malbrain ML,Chiumello D,Pelosi P,et al. Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological studyIntensive Care MedYear: 20043058222914758472
3. Cheatham ML,Malbrain ML,Kirkpatrick A,et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. II. RecommendationsIntensive Care MedYear: 20073369516217377769
4. Malbrain ML,Cheatham ML,Kirkpatrick A,et al. Results from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment Syndrome. I. DefinitionsIntensive Care MedYear: 2006321117223216967294
5. Camilleri M,Thorne NK,Ringel Y,et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipationNeurogastroenterol MotilYear: 201022887482e23320465593
6. Cassilly D,Kantor S,Knight LC,et al. Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphyNeurogastroenterology & MotilityYear: 20082043111918194154
7. Kloetzer L,Chey WD,McCallum RW,et al. Motility of the antroduodenum in healthy and gastroparetics characterized by wireless motility capsuleNeurogastroenterol MotilYear: 201022552733e11720122128
8. Kuo B,Maneerattanaporn M,Lee AA,et al. Generalized Transit Delay on Wireless Motility Capsule Testing in Patients with Clinical Suspicion of Gastroparesis, Small Intestinal Dysmotility, or Slow Transit ConstipationDig Dis SciYear: 2011561029283821625964
9. Kuo B,McCallum RW,Koch KL,et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjectsAlimentary Pharmacology & TherapeuticsYear: 20082721869617973643
10. Rao SS,Kuo B,McCallum RW,et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipationClin Gastroenterol HepatolYear: 20097553754419418602
11. Rauch S,Muellenbach RM,Johannes A,Zollhofer B,Roewer N. Gastric pH and motility in a porcine model of acute lung injury using a wireless motility capsuleMed Sci MonitYear: 2011177BR1616421709625
12. Muellenbach RM,Kredel M,Zollhoefer B,et al. Acute respiratory distress induced by repeated saline lavage provides stable experimental conditions for 24 hours in pigsExp Lung ResYear: 20093532223319337905
13. Schachtrupp A,Wauters J,Wilmer A. What is the best animal model for ACS?Acta Clinica Belgica – SupplementumYear: 200712253217469725
14. De Waele JJ,Cheatham ML,Malbrain ML,et al. Recommendations for research from the International Conference of Experts on Intra-abdominal Hypertension and Abdominal Compartment SyndromeActa Clin BelgYear: 2009643203919670559
15. Malbrain ML,De Laet IE,Willems A,et al. Localised abdominal compartment syndrome: bladder-over-gastric pressure ratio (B/G ratio) as a clue to diagnosisActa Clinica BelgicaYear: 20106529810620491359
16. De Keulenaer BL,Regli A,Dabrowski W,et al. Does femoral venous pressure measurement correlate well with intrabladder pressure measurement? A multicenter observational trialIntensive Care MedYear: 2011371016202721739341
17. Schachtrupp A,Henzler D,Orfao S,et al. Evaluation of a modified piezoresistive technique and a water-capsule technique for direct and continuous measurement of intra-abdominal pressure in a porcine modelCritical Care MedicineYear: 20063437455016505660
18. Becker V,Schmid RM,Umgelter A. Comparison of a new device for the continuous intra-gastric measurement of intra-abdominal pressure (CiMon) with direct intra-peritoneal measurements in cirrhotic patients during paracentesisIntensive Care MedicineYear: 20093559485219242674
19. Malbrain ML,De laet I,Viaene D,et al. In vitro validation of a novel method for continuous intra-abdominal pressure monitoringIntensive Care MedicineYear: 20083447404518075730
20. Davis PJ,Koottayi S,Taylor A,Butt WW. Comparison of indirect methods of measuring intra-abdominal pressure in childrenIntensive Care MedicineYear: 20053134717515678316
21. Collee GG,Lomax DM,Ferguson C,Hanson GC. Bedside measurement of intra-abdominal pressure (IAP) via an indwelling naso-gastric tube: clinical validation of the techniqueIntensive Care MedicineYear: 1993198478808294633

Article Categories:
  • Basic Research

Keywords: motility capsule, intra-abdominal pressures, animal model.

Previous Document:  Exposure assessment for a cohort of workers at a former uranium processing facility.
Next Document:  Establishment of a monoclonal antibody against a peptide of the novel zinc finger protein ZNF32 prov...