Document Detail


Epigenetic Regulation of Skeletal Muscle Development and Differentiation.
MedLine Citation:
PMID:  23150250     Owner:  NLM     Status:  Publisher    
Abstract/OtherAbstract:
Skeletal muscle cells have served as a paradigm for understanding mechanisms leading to cellular differentiation. Formation of skeletal muscle involves a series of steps in which cells are commited towards the myogenic lineage, undergo expansion to give rise to myoblasts that differentiate into multinucleated myotubes, and mature to form adult muscle fibers. The commitment, proliferation, and differentiation of progenitor cells involve both genetic and epigenetic changes that culminate in alterations in gene expression. Members of the Myogenic regulatory factor (MRF), as well as the Myocyte Enhancer Factor (MEF2) families control distinct steps of skeletal muscle proliferation and differentiation. In addition, -growing evidence indicates that chromatin modifying enzymes and remodeling complexes epigenetically reprogram muscle promoters at various stages that preclude or promote MRF and MEF2 activites. Among these, histone deacetylases (HDACs), histone acetyltransferases (HATs), histone methyltransferases (HMTs) and SWI/SNF complexes alter chromatin structure through post-translational modifications to impact MRF and MEF2 activities. With such new and emerging knowledge, we are beginning to develop a true molecular understanding of the mechanisms by which skeletal muscle development and differentiation is regulated. Elucidation of the mechanisms by which epigenetic regulators control myogenesis will likely provide a new foundation for the development of novel therapeutic drugs for muscle dystrophies, ageing-related regeneration defects that occur due to altered proliferation and differentiation, and other malignancies.
Authors:
Narendra Bharathy; Belinda Mei Tze Ling; Reshma Taneja
Publication Detail:
Type:  JOURNAL ARTICLE    
Journal Detail:
Title:  Sub-cellular biochemistry     Volume:  61     ISSN:  0306-0225     ISO Abbreviation:  Subcell. Biochem.     Publication Date:  2013  
Date Detail:
Created Date:  2012-11-14     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0316571     Medline TA:  Subcell Biochem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  139-150     Citation Subset:  -    
Affiliation:
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore, 117597, Singapore.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Descriptor/Qualifier:

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine


Previous Document:  Epigenetic Regulation of Male Germ Cell Differentiation.
Next Document:  Small Changes, Big Effects: Chromatin Goes Aging.