Document Detail

Epigenetic Regulation of Cancer Stem Cell Gene Expression.
MedLine Citation:
PMID:  23150261     Owner:  NLM     Status:  Publisher    
The concept of cancer as a stem cell disease has slowly gained ground over the last decade. A 'stem-like' state essentially necessitates that some cells in the developing tumor express the properties of remaining quiescent, self-renewing and regenerating tumors through establishment of aberrant cellular hierarchies. Alternatively, such capacities may also be reacquired through a de-differentiation process. The abnormal cellular differentiation patterns involved during either process during carcinogenesis are likely to be driven through a combination of genetic events and epigenetic regulation. The role(s) of the latter is increasingly being appreciated in acquiring the requisite genomic specificity and flexibility required for phenotypic plasticity, specifically in a context wherein genome sequences are not altered for differentiation to ensue. In this chapter, the recent advances in elucidating epigenetic mechanisms that govern the self-renewal, differentiation and regenerative potentials of cancer stem cells will be presented.
Sharmila A Bapat
Publication Detail:
Journal Detail:
Title:  Sub-cellular biochemistry     Volume:  61     ISSN:  0306-0225     ISO Abbreviation:  Subcell. Biochem.     Publication Date:  2013  
Date Detail:
Created Date:  2012-11-14     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  0316571     Medline TA:  Subcell Biochem     Country:  -    
Other Details:
Languages:  ENG     Pagination:  419-434     Citation Subset:  -    
National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune, 411 007, India,
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Chromatin Structure and Organization: The Relation with Gene Expression During Development and Disea...
Next Document:  Role of Epigenetic Mechanisms in the Vascular Complications of Diabetes.