Document Detail

Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.
MedLine Citation:
PMID:  8417837     Owner:  NLM     Status:  MEDLINE    
To study the mechanism of defibrillation and the reason for the increased defibrillation efficacy of biphasic waveforms, the potential gradient in a 32 x 30-mm region of the right ventricle in 15 dogs was progressively lowered in four steps while a strong potential gradient field was maintained throughout the rest of the ventricular myocardium. The volume of right ventricle beneath the plaque was 10 +/- 2% of the total ventricular mass. A 10-msec monophasic (eight dogs) or 5/5-msec biphasic (seven dogs) truncated exponential shock 30% above the defibrillation threshold voltage was given via electrodes on the left ventricular apex and right atrium to create the strong potential gradient field. Simultaneously, a weaker shock with the same waveform but opposite polarity was given via mesh electrodes on either side of the small right ventricular region to cancel part of the potential difference in the region and to create one of the four levels of potential gradient fields. Shock potentials and activations were recorded from 117 epicardial electrodes in the small region, and in one dog global epicardial activations and potentials were recorded from a sock containing 72 electrodes. Each gradient field was tested 10 times for successful defibrillation after 10 seconds of electrically induced fibrillation. For both monophasic and biphasic shocks, the percentage of successful defibrillation attempts decreased (p < 0.05) as the potential gradient decreased in the small region. Defibrillation was successful approximately 80% of the time for a mean +/- SD potential gradient of 5.4 +/- 0.8 V/cm for monophasic shocks and 2.7 +/- 0.3 V/cm for biphasic shocks (p < 0.05). No postshock activation fronts arose from the small region for eight waveform when the gradient was more than 5 V/cm. For both waveforms, the postshock activation fronts after the shocks were markedly different from those just before the shock and exhibited either a focal origin or unidirectional conduction.(ABSTRACT TRUNCATED AT 400 WORDS)
X Zhou; J P Daubert; P D Wolf; W M Smith; R E Ideker
Related Documents :
9249827 - Preimplant atrial defibrillation testing with a temporary catheter in sheep.
25464467 - Recurrences of symptoms after av node re-entrant tachycardia ablation: a clinical arrhy...
19026857 - Recurrent ventricular arrhythmia storms in the age of implantable cardioverter defibril...
8800117 - Multicenter experience with a pectoral unipolar implantable cardioverter-defibrillator....
18154787 - Mitral valve disease presentation and surgical outcome in african-american patients com...
17321617 - Myotomy through heart-port access for myocardial bridging.
Publication Detail:
Type:  Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S.    
Journal Detail:
Title:  Circulation research     Volume:  72     ISSN:  0009-7330     ISO Abbreviation:  Circ. Res.     Publication Date:  1993 Jan 
Date Detail:
Created Date:  1993-01-29     Completed Date:  1993-01-29     Revised Date:  2008-11-21    
Medline Journal Info:
Nlm Unique ID:  0047103     Medline TA:  Circ Res     Country:  UNITED STATES    
Other Details:
Languages:  eng     Pagination:  145-60     Citation Subset:  IM    
Department of Medicine, Duke University Medical Center, Durham, NC 27710.
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms
Electric Countershock
Ventricular Fibrillation / physiopathology*
Ventricular Function*
Grant Support

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate arteries.
Next Document:  Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent rela...