Document Detail

Enamel structural changes induced by hydrochloric and phosphoric acid treatment.
MedLine Citation:
PMID:  24700262     Owner:  NLM     Status:  Publisher    
Purpose: The aim of this study was to evaluate enamel acid-induced structural changes after 2 different treatments, by means of Raman and infrared (IR) spectroscopy analyses, and to correlate these findings with permeability measured as fluid discharge from outer enamel. Methods: Two different treatments were investigated: 10 enamel slices were etched with 15% hydrochloric acid (HCl) for 120 seconds and 10 slices with 37% phosphoric acid gel (H3PO4) for 30 seconds, rinsed for 30 seconds and then air-dried for 20 seconds. Powders of enamel treated as previously described were produced. Replicas of enamel subjected to the same treatments were obtained to evaluate the presence of fluid droplets on enamel surface. Results and conclusions: Raman and IR spectroscopy showed that the treatment with both hydrochloric and phosphoric acids induced a decrease in the carbonate content of the enamel apatite. At the same time, both acids induced the formation of HPO42- ions. After H3PO4 treatment, the bands due to the organic component of enamel decreased in intensity, while they increased after HCl treatment. Replicas of H3PO4 treated enamel showed a strongly reduced permeability. Replicas of HCl 15% treated samples showed a maintained permeability. A decrease of the enamel organic component, as resulted after H3PO4 treatment, involves a decrease in enamel permeability, while the increase of the organic matter (achieved by HCl treatment) still maintains enamel permeability.The results suggested a correlation between organic matter and enamel permeability. Permeability was affected by etching technique and could be involved in marginal seal, gap and discoloration at the enamel interface, still causes of restoration failure.
Angelica Bertacci; Alessandra Lucchese; Paola Taddei; Enrico F Gherlone; Stefano Chersoni
Publication Detail:
Type:  JOURNAL ARTICLE     Date:  2014-3-30
Journal Detail:
Title:  Journal of applied biomaterials & functional materials     Volume:  -     ISSN:  2280-8000     ISO Abbreviation:  J Appl Biomater Funct Mater     Publication Date:  2014 Mar 
Date Detail:
Created Date:  2014-4-4     Completed Date:  -     Revised Date:  -    
Medline Journal Info:
Nlm Unique ID:  101586617     Medline TA:  J Appl Biomater Funct Mater     Country:  -    
Other Details:
Languages:  ENG     Pagination:  0     Citation Subset:  -    
Export Citation:
APA/MLA Format     Download EndNote     Download BibTex
MeSH Terms

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine

Previous Document:  Effect of surface treatments on the bond strength of veneering ceramic to zirconia.
Next Document:  Polymeric materials as artificial muscles: an overview.